Description

一个有N个元素的集合有2N个不同子集(包含空集),现在要在这2N个集合中取出若干集合(至少一个),使得

它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

Input

一行两个整数N,K

Output

一行为答案。

Sample Input

3 2

Sample Output

6

HINT

【样例说明】

假设原集合为{A,B,C}

则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}

【数据说明】

对于100%的数据,1≤N≤1000000;0≤K≤N;

Sol

恰好xx的问题,很大几率是容斥。。。

冷静分析一下,我们现在假设钦定了K个数字作为交集的最终结果,那么包含这些数字数字组成的集合就可以随便选,这样的方案数是\(C(n,k)*(2^{2^{n-i}}-1)\)(这里空集是不合法的)。但是这样算出来的是“至少有K个”,我们要用容斥来处理一下,而且这里的方案是有序的,所以容斥系数是还要乘以组合数。具体地,恰好选j个的每个方案里面,都包含了\(C(j,i)\)个有i个的,要算入系数。

至此本题的解法就完了,但是有一个问题:\(2^{2^{n-i}}\)是不能快速幂的,所以我们用递推法,开始的时候\(t=1\),每循环一次,\(t=t*(t+2)\)。

Code

#include <cstdio>
#define ll long long
ll n,k,A,fac[1000005],ifc[1000005],inv[1000005],P=1000000007;
ll c(int x,int y){return 1ll*fac[x]*ifc[y]%P*ifc[x-y]%P;}
int main()
{
scanf("%lld%lld",&n,&k);
inv[1]=fac[0]=ifc[0]=fac[1]=ifc[1]=1;
for(int i=2;i<=n;i++) inv[i]=(P-(P/i)*inv[P%i])%P,fac[i]=fac[i-1]*i%P,ifc[i]=ifc[i-1]*inv[i]%P;
for(ll i=n,op=((n-k)&1)?-1:1,t=1;i>=k;i--) A=(A+P+op*c(i,k)*c(n,i)%P*t%P)%P,op=-op,t=t*(t+2)%P;
printf("%lld\n",A);
}

【BZOJ2839】集合计数 容斥原理+组合数的更多相关文章

  1. [bzoj2839]集合计数 题解 (组合数+容斥)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007 ...

  2. bzoj2839 集合计数 组合计数 容斥原理|题解

    集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...

  3. 【BZOJ-2839】集合计数 容斥原理 + 线性推逆元 + 排列组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 229  Solved: 120[Submit][Status][Discuss] ...

  4. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

  5. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  6. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  7. bzoj2839 集合计数

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  Logout 捐赠本站 2839: 集合计数 Time ...

  8. bzoj2839 集合计数(容斥+组合)

    集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出     题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...

  9. 2019.02.09 bzoj2839: 集合计数(容斥原理)

    传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk​种方案 ...

随机推荐

  1. Android 4 学习(12):Linkify & Broadcast event

    参考<Professional Android 4 Development> Linkify Linkfy类可以在Text View中创建超链接.匹配LInkify中正则表达式的文本将被L ...

  2. leetcode821

    vector<int> shortestToChar(string S, char C) { vector<int> V; ; int AYC[N]; ; ; i < S ...

  3. Python中正则表达式对中文的匹配问题

    python匹配中文的时候特别要注意的是匹配的正则字符串是否是Unicode格式的: import re source = "s2f程序员杂志一2d3程序员杂志二2d3程序员杂志三2d3程序 ...

  4. jar包上传到jcenter

    H:\[BOOT]\gradle-5.0-bin\gradle-5.0\gradle.properties # in $HOME/.gradle/gradle.properties java6Home ...

  5. SpringBoot22 Ajax跨域、SpringBoot返回JSONP、CSRF、CORS

    1 扫盲知识 1.1 Ajax为什么存在跨域问题 因为浏览器处于安全性的考虑不允许JS执行跨域请求. 1.2 浏览器为什么要限制JS的跨域访问 如果浏览器允许JS的跨域请求就很容易造成 CSRF (C ...

  6. WCF4.0 –- RESTful WCF Services

    转自:http://blog.csdn.net/fangxinggood/article/details/6235662 WCF 很好的支持了 REST 的开发, 而 RESTful 的服务通常是架构 ...

  7. 洛谷P2569 [SCOI2010]股票交易

    P2569 [SCOI2010]股票交易 题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股 ...

  8. csv、txt读写及模式介绍

    1读写模式 r以读方式打开文件,可读取文件信息 w已写方式打开文件,可向文件写入信息.如文件存在,则清空,再写入 a以追加模式打开文件,打开文件可指针移至末尾,文件不存在则创建 r+以读写方式打开文件 ...

  9. 推荐一款基于XNA的开源游戏引擎《Engine Nine》

    一.前沿导读 XNA是微软基于.Net部署的下一代3D/2D游戏开发框架,其实XNA严格来说类似下一代的DirectX,当然不是说XNA会取代DirectX,但是基于XNA我们对于面向XBOX360, ...

  10. 黑盒测试实践--Day4 11.28

    黑盒测试实践--Day4 11.28 今天完成任务情况: 分块明确自己部分的工作,并做前期准备 完成被测系统--学生管理系统的需求规格说明书 完成Mook上高级测试课程的第六章在线学习,观看自动化测试 ...