BZOJ 1061 [Noi2008]志愿者招募(费用流)
题目描述
申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。
输入输出格式
输入格式:
第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了方便起见,我们可以认为每类志愿者的数量都是无限多的。
输出格式:
仅包含一个整数,表示你所设计的最优方案的总费用。
输入输出样例
说明
1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1。
题解
感觉和“最长k可重区间集问题”有点像,然而我还是不会
不得不说这题的思想真是非常巧妙
我们把每一个时间当做一个点
然后每一个时间$t$向$t+1$连容$inf-a[i]$费$0$的边
费$0$好理解,那容为什么要设成这样?
我们可以这样考虑,如果一天需要$a[i]$的志愿者,那么这个点必须被分去$a[i]$的流
然后因为源点到出发的流是$inf$的,为了跑满最大流,因为这一段容只有这么多,所以必须有其他地方能让它流这么多流
举个例子,我现在有$inf-b$的流,然而这一个点的容是$inf-a$的($b<a$,也就代表着人不够了),那么$inf-b>inf-a$,说明这一段流流不过去了,那么它必须在其他地方被分流,才能使它剩下的流过去
那么我们对于每一个志愿者,我们从$x$到$y+1$连一条容$inf$费$c$的边,表示这一个志愿者可以在这些天工作,费用为$c$
放到图里,就意味着可以从这里分去一部分流,使剩下的流可以通过,但要费用$c$
那么因为源点出发流为$inf$为了跑满最大流(这样才能保证每一天人都够),同时费用最省,跑一个最小费用最大流即可
//minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,M=;
int ver[M],Next[M],head[N],edge[M],flow[M],tot=;
int dis[N],disf[N],vis[N],Pre[N],last[N];
int n,m,s,t;
queue<int> q;
inline void add(int u,int v,int f,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,flow[tot]=f,edge[tot]=e;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot,flow[tot]=,edge[tot]=-e;
}
bool spfa(){
memset(dis,0x3f,sizeof(dis));
q.push(s),dis[s]=,disf[s]=inf,Pre[t]=-;
while(!q.empty()){
int u=q.front();q.pop();vis[u]=;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(flow[i]&&dis[v]>dis[u]+edge[i]){
dis[v]=dis[u]+edge[i],Pre[v]=u,last[v]=i;
disf[v]=min(disf[u],flow[i]);
if(!vis[v]) vis[v]=,q.push(v);
}
}
}
return ~Pre[t];
}
int dinic(){
int mincost=;
while(spfa()){
int u=t;mincost+=disf[t]*dis[t];
while(u!=s){
flow[last[u]]-=disf[t];
flow[last[u]^]+=disf[t];
u=Pre[u];
}
}
return mincost;
}
int main(){
n=read(),m=read();
s=,t=n+;
for(int i=;i<=n;++i){
int x=read();
add(i,i+,inf-x,);
}
add(s,,inf,);
for(int i=;i<=m;++i){
int u=read(),v=read(),dis=read();
add(u,v+,inf,dis);
}
printf("%d\n",dinic());
return ;
}
BZOJ 1061 [Noi2008]志愿者招募(费用流)的更多相关文章
- BZOJ 1061: [Noi2008]志愿者招募 费用流
1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...
- BZOJ 1061: [Noi2008]志愿者招募
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4064 Solved: 2476[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 3975 Solved: 2421[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募【单纯形裸题】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4813 Solved: 2877[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记看另一篇吧】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 3975 Solved: 2421[Submit][Stat ...
- BZOJ.1061.[NOI2008]志愿者招募(线性规划 对偶原理 单纯形 / 费用流SPFA)
题目链接 线性规划 用\(A_{ij}=0/1\)表示第\(i\)天\(j\)类志愿者能否被招募,\(x_i\)为\(i\)类志愿者招募了多少人,\(need_i\)表示第\(i\)天需要多少人,\( ...
- [BZOJ1061] [Noi2008] 志愿者招募 (费用流)
Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...
- BZOJ 1061: [Noi2008]志愿者招募(线性规划与网络流)
http://www.lydsy.com/JudgeOnline/problem.php?id=1061 题意: 思路: 直接放上大神的建模过程!!!(https://www.byvoid.com/z ...
- 【刷题】BZOJ 1061 [Noi2008]志愿者招募
Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完 ...
随机推荐
- springboot成神之——basic auth和JWT验证结合
本文介绍basic auth和JWT验证结合 目录结构 依赖 config配置文件WebSecurityConfig filter过滤器JWTLoginFilter filter过滤器JWTAuthe ...
- mysql跟踪执行的sql语句
修改my.cnf配置文件 /usr/local/mysql/bin/mysql --verbose --help | grep -A 1 'Default options' Default optio ...
- Python 中的 is 和 == 编码和解码
一 is 与 == 区别 == 比较 比较的是值 例如: a = 'alex' b = 'alex' print(a == b) #True a = 10 ...
- 改变函数中的 this 指向——神奇的call,apply和bind及其应用
在JavaScript 中,call.apply 和 bind 是 Function 对象自带的三个方法,这三个方法的主要作用是改变函数中的 this 指向,从而可以达到`接花移木`的效果.本文将对这 ...
- oracle:RETURNING 子句
RETURNING 自己通常结合DML 语句使用.(INSERT UPDATE DELETE) 使用方法: UPDATE table_name SET expr1 RETURNING column_n ...
- Table Tennis Game 2
Description Misha and Vanya have played several table tennis sets. Each set consists of several serv ...
- 哪些 IT 职位难以替代,竞争力强?
原文出自知乎:http://www.zhihu.com/question/24795311 有10多年的软件行业经验,只针对软件行业来回答这个问题: 很少有无法替代的职位,只能说替代的成本高低而已. ...
- Spring 实例化bean的三种方式
第一种方法:直接配置Bean <bena id="所需要实例化的一个实例名称" class="包名.类名"/> 例如: 配置文件中的bean.XML ...
- 7.内网渗透之windows认证机制
文章参考自三好学生域渗透系列文章 看了内网渗透第五篇文章,发现如果想要真正了解PTT,PTH攻击流程,还需要了解windows的认证机制,包括域内的kerberos协议. windows认证机制 在域 ...
- M(必备),R(需求),C(条件),O(可选)
M:must 必备 R:request 需求 C:condition 条件 O:option 可选 AFL:application file locator 应用文件定位器 PKI:公钥索引 IPK: ...