bzoj1221软件开发 费用流
思路:
网络流拆点有的是“过程拆点”,有的是“状态拆点”,这道题应该就属于状态拆点。
每个点分需要用的,用完的。
对于需要用的,这些毛巾来自新买的和用过的毛巾进行消毒的,流向终点。
对于用完的,来自源点,可以用于消毒,连向需要用的点,还有一些毛巾留到明天消毒(其实意思是,消完毒,延后使用,但是这样建边麻烦)。
挺不错的题目吧。
一个非常坑的地方就是,a和b可能大于1000,所以拆点的点的编号要很小心,要判断一下是否越界。
推荐一个博客。大佬的博客
#include<bits/stdc++.h>
#define CLR(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int MAXN = ;
const int MAXM = ;
const int INF = 0x3f3f3f3f;
struct Edge {
int to, next, cap, flow, cost; } edge[MAXM];
struct pp {
int u,v,c,w;
} in[MAXN];
int head[MAXN], tol;
int pre[MAXN], dis[MAXN];
int n,a,b,f,fa,fb;
int aa[];
bool vis[MAXN];
int N=MAXN-;
void init() { tol = ;
memset(head, -, sizeof(head)); }
void addv(int u, int v, int cap, int cost) {
// printf("u:%d v:%d cap:%d cost:%d\n",u,v,cap,cost);
edge[tol].to = v;
edge[tol].cap = cap;
edge[tol].cost = cost;
edge[tol].flow = ;
edge[tol].next = head[u];
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = ;
edge[tol].cost = -cost;
edge[tol].flow = ;
edge[tol].next = head[v];
head[v] = tol++; }
bool spfa(int s, int t) {
queue<int>q;
CLR(dis,INF);
CLR(vis,),CLR(pre,-); dis[s] = ;
vis[s] = true;
q.push(s);
while (!q.empty()) {
int u = q.front();
q.pop();
vis[u] = false;
for (int i = head[u]; i != -; i = edge[i].next) {
int v = edge[i].to; if (edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost) {
dis[v] = dis[u] + edge[i].cost;
pre[v] = i;
if (!vis[v]) {
vis[v] = true;
q.push(v); } } } }
if (pre[t] == -)return false;
else return true; }
//返回的是最大流,cost 存的是最小费用
int minCostMaxflow(int s, int t, int &cost) {
int flow = ;
cost = ; while (spfa(s, t)) { int Min = INF;
for (int i = pre[t]; i != -; i = pre[edge[i ^ ].to]) {
if (Min > edge[i].cap - edge[i].flow)
Min = edge[i].cap - edge[i].flow;
//printf("debug\n");
}
for (int i = pre[t]; i != -; i = pre[edge[i ^ ].to]) {
edge[i].flow += Min;
edge[i ^ ].flow -= Min;
cost += edge[i].cost * Min; }
flow += Min; }
return flow; }
int main() {
cin>>n>>a>>b>>f>>fa>>fb;
init();
for(int i=;i<=n;i++)
{
scanf("%d",&aa[i]);
}
int s=,p=,t=;
for(int i=;i<=n;i++)
{
addv(s,i,aa[i],);
addv(i+p,t,aa[i],); addv(s,i+p,INF,f);
if(i+a<=n)
addv(i,i+a+p+,INF,fa);
if(i+b<=n)
addv(i,i+b+p+,INF,fb);
if(i+<=n)
addv(i,i+,INF,);
}
int cost;
minCostMaxflow(s,t,cost);
printf("%d\n",cost);
}
1221: [HNOI2001] 软件开发
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2103 Solved: 1217
[Submit][Status][Discuss]
Description
某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛巾,这种消毒毛巾使用一天后必须再做消毒处理后才能使用。消毒方式有两种,A种方式的消毒需要a天时间,B种方式的消毒需要b天(b>a),A种消毒方式的费用为每块毛巾fA, B种消毒方式的费用为每块毛巾fB,而买一块新毛巾的费用为f(新毛巾是已消毒的,当天可以使用);而且f>fA>fB。公司经理正在规划在这n天中,每天买多少块新毛巾、每天送多少块毛巾进行A种消毒和每天送多少块毛巾进行B种消毒。当然,公司经理希望费用最低。你的任务就是:为该软件公司计划每天买多少块毛巾、每天多少块毛巾进行A种消毒和多少毛巾进行B种消毒,使公司在这项n天的软件开发中,提供毛巾服务的总费用最低。
Input
第1行为n,a,b,f,fA,fB. 第2行为n1,n2,……,nn. (注:1≤f,fA,fB≤60,1≤n≤1000)
Output
最少费用
Sample Input
8 2 1 6
Sample Output
bzoj1221软件开发 费用流的更多相关文章
- 【BZOJ1221】【HNOI2001】软件开发 [费用流]
软件开发 Time Limit: 10 Sec Memory Limit: 162 MB[Submit][Status][Discuss] Description 某软件公司正在规划一项n天的软件开 ...
- 【bzoj1221】[HNOI2001] 软件开发 费用流
题目描述 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消 ...
- BZOJ1221 [HNOI2001]软件开发 - 费用流
题解 非常显然的费用流. 但是建图还是需要思考的QuQ 将每天分成两个节点 $x_{i,1}, x_{i,2} $, $ x_{i,1}$用于提供服务, $x_{i ,2}$ 用来从源点获得$nd[i ...
- bzoj 1221 [HNOI2001] 软件开发 费用流
[HNOI2001] 软件开发 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1938 Solved: 1118[Submit][Status][D ...
- BZOJ 1221 [HNOI2001] 软件开发 费用流_建模
题目描述: 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供 ...
- BZOJ 1221 软件开发(费用流)
容易看出这是显然的费用流模型. 把每天需要的餐巾数作为限制.需要将天数拆点,x’表示每天需要的餐巾,x’’表示每天用完的餐巾.所以加边 (s,x',INF,0),(x'',t,INF,0). 餐巾可以 ...
- bzoj1221 软件开发
Description 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员 ...
- BZOJ-1221 软件开发
这题是基于一道经典的费用流模型. 将每天拆成两个点i和j,新增源和汇并建立六种边: 1.从源出发到每个i点,flow为+∞,cost为每条新餐巾的价值,表示这一天所使用的餐巾中来自购买的餐巾 2.从源 ...
- 【费用流】bzoj1221 [HNOI2001] 软件开发
几乎为“线性规划与网络流24题”中的餐巾问题. 这里把S看成毛巾的来源,T看成软件公司,我们的目的就是让每天的毛巾满足要求(边满流). 引用题解: [问题分析] 网络优化问题,用最小费用最大流解决. ...
随机推荐
- vim 的小幅移动
1.操作符命令和位移 x --->删除一个字符,4x ---->删除4个字符. dw --->可以删除一个单词,d4w ---->删除4个单词. d$ ----> 删除 ...
- 面试题:ConcurrentHashMap实现线程安全的原理
在ConcurrentHashMap没有出现以前,jdk使用hashtable来实现线程安全,但是hashtable是将整个hash表锁住,所以效率很低下. ConcurrentHashMap将数据分 ...
- Mock Server实践
转载自 https://tech.meituan.com/mock-server-in-action.html 背景 在美团服务端测试中,被测服务通常依赖于一系列的外部模块,被测服务与外部模块间通过R ...
- 23、sed常用命令
1.匹配与不匹配: n p ! sed -n '/ATTGC/p' file1 ##-n打印匹配到的行输出,默认所有行输出. sed -n '/AT\|GC/p' fil ...
- Tomcat 与 数据库连接池 的小坑
连接池的优点众所周知. 我们可以自己实现数据库连接池,也可引入实现数据库连接池的jar包,按要求进行配置后直接使用. 关于这方面的资料,好多dalao博客上记录的都是旧版本Tomcat的配置方式,很可 ...
- Tarjan算法求出强连通分量(包含若干个节点)
[功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连 ...
- 编写高质量代码改善C#程序的157个建议——建议10: 创建对象时需要考虑是否实现比较器
建议10: 创建对象时需要考虑是否实现比较器 有对象的地方就会存在比较,在.NET的世界中也一样.举个最简单的例子,在UI中,有一个10个人的Salary列表.根据排序的需要,列表要支持针对基本工资来 ...
- jenkins slave Windows 2008 R2
布置jenkins,添加节点(win2008R2) 配置节点参考: http://www.cnblogs.com/juddhu/archive/2013/07/18/3198191.html 生效la ...
- c#帮助类:发送邮件
private static string IsOpenSendMail = ConfigurationManager.AppSettings["IsOpenSendMail"]; ...
- kali linux之被动信息收集(dns信息收集,区域传输,字典爆破)
公开可获取的信息,不与目标系统产生交互,避免留下痕迹 下图来自美军方 pdf链接:http://www.fas.org/irp/doddir/army/atp2-22-9.pdf 信息收集内容(可利用 ...