题目传送门

思路:

  网络流拆点有的是“过程拆点”,有的是“状态拆点”,这道题应该就属于状态拆点。

  每个点分需要用的,用完的。

  对于需要用的,这些毛巾来自新买的和用过的毛巾进行消毒的,流向终点。

  对于用完的,来自源点,可以用于消毒,连向需要用的点,还有一些毛巾留到明天消毒(其实意思是,消完毒,延后使用,但是这样建边麻烦)。

  挺不错的题目吧。

  一个非常坑的地方就是,a和b可能大于1000,所以拆点的点的编号要很小心,要判断一下是否越界。

  推荐一个博客。大佬的博客

#include<bits/stdc++.h>
#define CLR(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int MAXN = ;
const int MAXM = ;
const int INF = 0x3f3f3f3f;
struct Edge {
int to, next, cap, flow, cost; } edge[MAXM];
struct pp {
int u,v,c,w;
} in[MAXN];
int head[MAXN], tol;
int pre[MAXN], dis[MAXN];
int n,a,b,f,fa,fb;
int aa[];
bool vis[MAXN];
int N=MAXN-;
void init() { tol = ;
memset(head, -, sizeof(head)); }
void addv(int u, int v, int cap, int cost) {
// printf("u:%d v:%d cap:%d cost:%d\n",u,v,cap,cost);
edge[tol].to = v;
edge[tol].cap = cap;
edge[tol].cost = cost;
edge[tol].flow = ;
edge[tol].next = head[u];
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = ;
edge[tol].cost = -cost;
edge[tol].flow = ;
edge[tol].next = head[v];
head[v] = tol++; }
bool spfa(int s, int t) {
queue<int>q;
CLR(dis,INF);
CLR(vis,),CLR(pre,-); dis[s] = ;
vis[s] = true;
q.push(s);
while (!q.empty()) {
int u = q.front();
q.pop();
vis[u] = false;
for (int i = head[u]; i != -; i = edge[i].next) {
int v = edge[i].to; if (edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost) {
dis[v] = dis[u] + edge[i].cost;
pre[v] = i;
if (!vis[v]) {
vis[v] = true;
q.push(v); } } } }
if (pre[t] == -)return false;
else return true; }
//返回的是最大流,cost 存的是最小费用
int minCostMaxflow(int s, int t, int &cost) {
int flow = ;
cost = ; while (spfa(s, t)) { int Min = INF;
for (int i = pre[t]; i != -; i = pre[edge[i ^ ].to]) {
if (Min > edge[i].cap - edge[i].flow)
Min = edge[i].cap - edge[i].flow;
//printf("debug\n");
}
for (int i = pre[t]; i != -; i = pre[edge[i ^ ].to]) {
edge[i].flow += Min;
edge[i ^ ].flow -= Min;
cost += edge[i].cost * Min; }
flow += Min; }
return flow; }
int main() {
cin>>n>>a>>b>>f>>fa>>fb;
init();
for(int i=;i<=n;i++)
{
scanf("%d",&aa[i]);
}
int s=,p=,t=;
for(int i=;i<=n;i++)
{
addv(s,i,aa[i],);
addv(i+p,t,aa[i],); addv(s,i+p,INF,f);
if(i+a<=n)
addv(i,i+a+p+,INF,fa);
if(i+b<=n)
addv(i,i+b+p+,INF,fb);
if(i+<=n)
addv(i,i+,INF,);
}
int cost;
minCostMaxflow(s,t,cost);
printf("%d\n",cost);
}

1221: [HNOI2001] 软件开发

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2103  Solved: 1217
[Submit][Status][Discuss]

Description

某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛巾,这种消毒毛巾使用一天后必须再做消毒处理后才能使用。消毒方式有两种,A种方式的消毒需要a天时间,B种方式的消毒需要b天(b>a),A种消毒方式的费用为每块毛巾fA, B种消毒方式的费用为每块毛巾fB,而买一块新毛巾的费用为f(新毛巾是已消毒的,当天可以使用);而且f>fA>fB。公司经理正在规划在这n天中,每天买多少块新毛巾、每天送多少块毛巾进行A种消毒和每天送多少块毛巾进行B种消毒。当然,公司经理希望费用最低。你的任务就是:为该软件公司计划每天买多少块毛巾、每天多少块毛巾进行A种消毒和多少毛巾进行B种消毒,使公司在这项n天的软件开发中,提供毛巾服务的总费用最低。

Input

第1行为n,a,b,f,fA,fB. 第2行为n1,n2,……,nn. (注:1≤f,fA,fB≤60,1≤n≤1000)

Output

最少费用

Sample Input

4 1 2 3 2 1
8 2 1 6

Sample Output

38

bzoj1221软件开发 费用流的更多相关文章

  1. 【BZOJ1221】【HNOI2001】软件开发 [费用流]

    软件开发 Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 某软件公司正在规划一项n天的软件开 ...

  2. 【bzoj1221】[HNOI2001] 软件开发 费用流

    题目描述 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消 ...

  3. BZOJ1221 [HNOI2001]软件开发 - 费用流

    题解 非常显然的费用流. 但是建图还是需要思考的QuQ 将每天分成两个节点 $x_{i,1}, x_{i,2} $, $ x_{i,1}$用于提供服务, $x_{i ,2}$ 用来从源点获得$nd[i ...

  4. bzoj 1221 [HNOI2001] 软件开发 费用流

    [HNOI2001] 软件开发 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1938  Solved: 1118[Submit][Status][D ...

  5. BZOJ 1221 [HNOI2001] 软件开发 费用流_建模

    题目描述:   某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供 ...

  6. BZOJ 1221 软件开发(费用流)

    容易看出这是显然的费用流模型. 把每天需要的餐巾数作为限制.需要将天数拆点,x’表示每天需要的餐巾,x’’表示每天用完的餐巾.所以加边 (s,x',INF,0),(x'',t,INF,0). 餐巾可以 ...

  7. bzoj1221 软件开发

    Description 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员 ...

  8. BZOJ-1221 软件开发

    这题是基于一道经典的费用流模型. 将每天拆成两个点i和j,新增源和汇并建立六种边: 1.从源出发到每个i点,flow为+∞,cost为每条新餐巾的价值,表示这一天所使用的餐巾中来自购买的餐巾 2.从源 ...

  9. 【费用流】bzoj1221 [HNOI2001] 软件开发

    几乎为“线性规划与网络流24题”中的餐巾问题. 这里把S看成毛巾的来源,T看成软件公司,我们的目的就是让每天的毛巾满足要求(边满流). 引用题解: [问题分析] 网络优化问题,用最小费用最大流解决. ...

随机推荐

  1. 关于getchar的一些思考

    这个问题是有一段代码引起的: 代码1: #include<iostream> using namespace std; int main() { char t; t=getchar(); ...

  2. MAC通过SSH使用PEM文件登录

    1.命令如下 ssh -i key.pem ssh -i key.pem root@IP 如果出现报错说明这个问题是文件的权限太大了,需要给小点 sudo chmod 600 key.pem 然后再执 ...

  3. Luogu 4251 [SCOI2015]小凸玩矩阵

    BZOJ 4443 二分答案 + 二分图匹配 外层二分一个最小值,然后检验是否能选出$n - k + 1$个不小于当前二分出的$mid$的数.对于每一个$a_{i, j} \geq mid$,从$i$ ...

  4. nodelet的理解

    1.介绍 nodelet包可以为在相同进程中的多个算法之间实现零拷贝的传输方式. 这个包也提供了实现一个nodelet所需的nodelet基类以及用于实例化nodelet的NodeletLoader类 ...

  5. 编写高质量代码改善C#程序的157个建议——建议50:在Dispose模式中应区别对待托管资源和非托管资源

    建议50:在Dispose模式中应区别对待托管资源和非托管资源 真正资源释放代码的那个虚方法是带一个bool参数的,带这个参数,是因为我们在资源释放时要区别对待托管资源和非托管资源. 提供给调用者调用 ...

  6. (一)在HTML页面中实现一个简单的Tab

    在HTML页面中实现一个简单的Tab 为了充分利用有限的HTML页面空间,经常会采用类似与TabControl的效果通过切换来显示更多的内容.本文将采用一种最为简单的方法来实现类似如Tab页切换的效果 ...

  7. 积分之谜——第六届蓝桥杯C语言B组(国赛)第一题

    原创 标题:积分之迷 小明开了个网上商店,卖风铃.共有3个品牌:A,B,C. 为了促销,每件商品都会返固定的积分. 小明开业第一天收到了三笔订单: 第一笔:3个A + 7个B + 1个C,共返积分:3 ...

  8. winform treeview绑定数据 DOM操作

    form1 public void treeView() { // datatable 定义变量接收 传归来的值 DataTable Father = new BuMenDA().ConSql(); ...

  9. openvpn的搭建与应用

    一.VPN概述: VPN(Virtual Private NetWork,虚拟专用网络)架设在公共共享的基础设施互联网上,在非信任的网络上建立私有的安全的连接,把分布在不同地域的办公场所.用户或者商业 ...

  10. 第一篇 Python的数据类型

    Python的标准数据类型有五种: (1)字符串 (2)数字(包括整数,浮点数,布尔,复数) (3)列表(list) (4)元组(tuple) (5)字典(dict) 注:使用type函数可以查看对象 ...