pearson相关分析在R中的实现
三个相关性函数:
cor():R自带的,输入数据可以是vector,matrix,data.frame,输出两两的相关系数R值
cor.test():R自带的,输入数据只能是两个vector,输出两个变量的相关系数R值,显著性水平a值
corr.test():psych包的,输入数据可以是data.frame,输出两两变量的相关系数R值,显著性水平a值
> cor(state.x77)
Population Income Illiteracy Life Exp Murder HS Grad Frost Area
Population 1.00000000 0.2082276 0.10762237 -0.06805195 0.3436428 -0.09848975 -0.3321525 0.02254384
Income 0.20822756 1.0000000 -0.43707519 0.34025534 -0.2300776 0.61993232 0.2262822 0.36331544
Illiteracy 0.10762237 -0.4370752 1.00000000 -0.58847793 0.7029752 -0.65718861 -0.6719470 0.07726113
Life Exp -0.06805195 0.3402553 -0.58847793 1.00000000 -0.7808458 0.58221620 0.2620680 -0.10733194
Murder 0.34364275 -0.2300776 0.70297520 -0.78084575 1.0000000 -0.48797102 -0.5388834 0.22839021
HS Grad -0.09848975 0.6199323 -0.65718861 0.58221620 -0.4879710 1.00000000 0.3667797 0.33354187
Frost -0.33215245 0.2262822 -0.67194697 0.26206801 -0.5388834 0.36677970 1.0000000 0.05922910
Area 0.02254384 0.3633154 0.07726113 -0.10733194 0.2283902 0.33354187 0.0592291 1.00000000
> cor.test(state.x77[,1],state.x77[,2]) Pearson's product-moment correlation data: state.x77[, 1] and state.x77[, 2]
t = 1.475, df = 48, p-value = 0.1467
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.07443435 0.45991855
sample estimates:
cor
0.2082276 > corr.test(state.x77)
Call:corr.test(x = state.x77)
Correlation matrix
Population Income Illiteracy Life Exp Murder HS Grad Frost Area
Population 1.00 0.21 0.11 -0.07 0.34 -0.10 -0.33 0.02
Income 0.21 1.00 -0.44 0.34 -0.23 0.62 0.23 0.36
Illiteracy 0.11 -0.44 1.00 -0.59 0.70 -0.66 -0.67 0.08
Life Exp -0.07 0.34 -0.59 1.00 -0.78 0.58 0.26 -0.11
Murder 0.34 -0.23 0.70 -0.78 1.00 -0.49 -0.54 0.23
HS Grad -0.10 0.62 -0.66 0.58 -0.49 1.00 0.37 0.33
Frost -0.33 0.23 -0.67 0.26 -0.54 0.37 1.00 0.06
Area 0.02 0.36 0.08 -0.11 0.23 0.33 0.06 1.00
Sample Size
[1] 50
Probability values (Entries above the diagonal are adjusted for multiple tests.)
Population Income Illiteracy Life Exp Murder HS Grad Frost Area
Population 0.00 1.00 1.00 1.00 0.23 1.00 0.25 1.00
Income 0.15 0.00 0.03 0.23 1.00 0.00 1.00 0.16
Illiteracy 0.46 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Life Exp 0.64 0.02 0.00 0.00 0.00 0.00 0.79 1.00
Murder 0.01 0.11 0.00 0.00 0.00 0.01 0.00 1.00
HS Grad 0.50 0.00 0.00 0.00 0.00 0.00 0.16 0.25
Frost 0.02 0.11 0.00 0.07 0.00 0.01 0.00 1.00
Area 0.88 0.01 0.59 0.46 0.11 0.02 0.68 0.00 To see confidence intervals of the correlations, print with the short=FALSE option
pearson相关分析在R中的实现的更多相关文章
- 简单介绍一下R中的几种统计分布及常用模型
统计学上分布有很多,在R中基本都有描述.因能力有限,我们就挑选几个常用的.比较重要的简单介绍一下每种分布的定义,公式,以及在R中的展示. 统计分布每一种分布有四个函数:d――density(密度函数) ...
- 在 R 中估计 GARCH 参数存在的问题(基于 rugarch 包)
目录 在 R 中估计 GARCH 参数存在的问题(基于 rugarch 包) 导论 rugarch 简介 指定一个 \(\text{GARCH}(1, 1)\) 模型 模拟一个 GARCH 过程 拟合 ...
- (数据科学学习手札19)R中基本统计分析技巧总结
在获取数据,并且完成数据的清洗之后,首要的事就是对整个数据集进行探索性的研究,这个过程中会利用到各种描述性统计量和推断性统计量来初探变量间和变量内部的基本关系,本篇笔者便基于R,对一些常用的数据探索方 ...
- R中一切都是vector
0.可以说R语言中一切结构体的基础是vector! R中一切都是vector,vecotor的每个component必须类型一致(character,numeric,integer....)!vect ...
- R中的par()函数的参数
把R中par()函数的主要参数整理了一下(另外本来还整理了每个参数的帮助文档中文解释,但是太长,就分类之后,整理为图表,excel不便放上来,就放了这些表的截图)
- 关于R中的mode()和class()的区别
本文原创,转载请注明出处,本人Q1273314690(交流学习) 说明:本文曾经在15年11月在CSDN发过,但是由于CSDN不支持为知笔记的发布为博客的API功能,所以,自今天起,转移到博客园(幸好 ...
- R中的name命名系列函数总结
本文原创,转载请注明出处,本人Q1273314690 R中关于给行列赋名称的函数有 dimnames,names,rowname,colname,row.names 这五个函数,初学的时候往往分不清楚 ...
- 总结——R中查看属性的函数
本文原创,转载注明出处,本人Q1273314690 R中知道一个变量的主要内容和结构,对我们编写代码是很重要的,也可以帮我们避免很多错误. 但是,R中有好几个关于属性查看的函数,我们往往不知道什么时候 ...
- R中创建not-yet-evaluated对象
create not-yet-evaluated object在R中创建 not-yet-evaluated(就是some code we will evaluated later!!)对象;然后执行 ...
随机推荐
- Spring4 MVC+Hibernate4+MySQL+Maven使用注解集成实例
在本教程中,我们将使用基于注解的配置集成Spring和Hibernate. 我们将开发包含表单要求用户输入一个简单的CRUD为导向Web应用程序,使用Hibernate保存输入的数据到 MySQL 数 ...
- CentOS下使用MyTop实时监控MySQL
CentOS下使用MyTop实时监控MySQL MyTop的项目页面为:http://jeremy.zawodny.com/mysql/mytop/ MyTop安装 $ yum -y install ...
- #进阶系列——WebApi 身份认证解决方案:Basic基础认证
阅读目录 一.为什么需要身份认证 二.Basic基础认证的原理解析 1.常见的认证方式 2.Basic基础认证原理 三.Basic基础认证的代码示例 1.登录过程 2./Home/Index主界面 3 ...
- android自定义View_4——自定义属性的格式选择
reference - if it references another resource id (e.g, "@color/my_color", "@layout/my ...
- JavaScript处理数据完成左侧二级菜单的搭建
我们在项目中应用的后台管理框架基本上都是大同小异,左侧是一个二级菜单,点击选中的菜单,右侧对应的页面展示.我把前端页面封装数据的过程整理了一下,虽然不一定适合所有的管理页面,仅作为案例来参考,只是希望 ...
- Objective-c 单例模式
用GCD写Objective-c的单例模式和C#有比较大的区别 声明h文件 #import <Foundation/Foundation.h> @interface me : NSObje ...
- IOS开发复习笔记(4)-TableView
总结几个TableView常用的代码 1.初始化方面 static string CellIndetifier=@"cellIndetifier"; -(NSInteger)num ...
- window子对象
Window 子对象 (1)Location 对象 Location 对象包含有关当前 URL(统一资源定位符) 的信息.(Uniform Resource Location) Location 对象 ...
- delphi局域网Ping各主机方法及设置本地ip方法
1. 首先引用winsock单元 function PingHost(HostIP: String): Boolean; type PIPOptionInformation=^TIPOptionInf ...
- 如何安装secureCRT8.1破解
安装地址 网盘: https://pan.baidu.com/s/1iGxi6BTCMC_jewCwcUHhgA 密码: u6jq 安装教程 1.点击安装 2.全部默认即可,安装完成之后再桌面上右击该 ...