[BZOJ4367][IOI2014]Holiday(决策单调性+分治+主席树)
4367: [IOI2014]holiday假期
Time Limit: 20 Sec Memory Limit: 64 MB
Submit: 421 Solved: 128
[Submit][Status][Discuss]Description
健佳正在制定下个假期去台湾的游玩计划。在这个假期,健佳将会在城市之间奔波,并且参观这些城市的景点。
在台湾共有n个城市,它们全部位于一条高速公路上。这些城市连续地编号为0到n-1。对于城市i(0<i<n-1)而言,与其相邻的城市是i-1和i+1。但是对于城市 0,唯一与其相邻的是城市 1。而对于城市n-1,唯一与其相邻的是城市n-2。
每个城市都有若干景点。健佳有d天假期并且打算要参观尽量多的景点。健佳已经选择了假期开始要到访的第一个城市。在假期的每一天,健佳可以选择去一个相邻
的城市,或者参观所在城市的所有景点,但是不能同时进行。即使健佳在同一个城市停留多次,他也不会去重复参观该城市的景点。请帮助健佳策划这个假期,以便
能让他参观尽可能多的景点。Input
第1行: n, start, d.
第2行: attraction[0], ..., attraction[n-1].
n: 城市数。
start: 起点城市的编号。
d: 假期的天数。
attraction: 长度为n的数组;attraction[i] 表示城市i的景点数目,其中0≤i≤n-1。Output
输出一个整数表示健佳最多可以参观的景点数。
Sample Input
5 2 7
10 2 20 30 1Sample Output
60HINT
假 设健佳有 7 天假期,有 5 个城市(参见下表),而且他由城市 2
开始。在第一天,健佳参观城市2的 20 个景点。第二天,健佳由城市 2 去往城市 3。而在第三天,健佳参观城市 3 的30
个景点。接下来的3天,健佳由城市 3 前往城市 0。而在第 7 天,健佳参观城市0的 10
个景点。这样健佳参观的景点总数是20+30+10=60,这是他由城市 2 开始、在 7 天假期内最多能参观的景点数目。Source
https://blog.csdn.net/CreationAugust/article/details/50821931
当需要枚举的东西呈单调性的时候可以用分治解决。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=,M=;
int n,st,m,cnt,root[N],b[N],sta[N],c,ls[M],rs[M],sz[M];
ll ret,ans,sum[M],f[N],g[N],f1[N],g1[N];
int fd[N],gd[N],f1d[N],g1d[N]; void ins(int x,int &y,int l,int r,int val,ll Val){
sz[y=++cnt]=sz[x]+; sum[y]=sum[x]+Val; ls[y]=ls[x];rs[y]=rs[x];
if (l==r) return; int mid=(l+r)>>;
if (val<=mid) ins(ls[x],ls[y],l,mid,val,Val);
else ins(rs[x],rs[y],mid+,r,val,Val);
} void query(int x,int y,int l,int r,int k){
if (k<=) return;
if (l==r) { ret+=1ll*min(k,sz[y]-sz[x])*sta[l]; return; }
int mid=(l+r)>>;
if (sz[rs[y]]-sz[rs[x]]>=k) query(rs[x],rs[y],mid+,r,k);
else ret+=sum[rs[y]]-sum[rs[x]],query(ls[x],ls[y],l,mid,k-sz[rs[y]]+sz[rs[x]]);
} void solve1(int l,int r,int L,int R){//要求f[l..r],d的范围在[L,R]
if (l>r) return;
int mid=(l+r)>>;
for (int i=L;i<=R;i++){
ret=; query(root[st-],root[i],,c,st-i+mid);
if (ret>f[mid]||!fd[mid]) f[mid]=ret,fd[mid]=i;
}
solve1(l,mid-,L,fd[mid]);solve1(mid+,r,fd[mid],R);
} void solve2(int l,int r,int L,int R){
if (l>r) return;
int mid=(l+r)>>;
for (int i=R; i>=L; i--){
ret=; query(root[i-],root[st-],,c,i-st+mid);
if (ret>g[mid]||!gd[mid]) g[mid]=ret,gd[mid]=i;
}
solve2(l,mid-,gd[mid],R); solve2(mid+,r,L,gd[mid]);
} void solve3(int l,int r,int L,int R){
if (l>r) return;
int mid=(l+r)>>;
for (int i=L; i<=R; i++){
ret=; query(root[st-],root[i],,c,((st-i)<<)+mid);
if (ret>f1[mid]||!f1d[mid]) f1[mid]=ret,f1d[mid]=i;
}
solve3(l,mid-,L,f1d[mid]); solve3(mid+,r,f1d[mid],R);
} void solve4(int l,int r,int L,int R){
if (l>r) return;
int mid=(l+r)>>;
for (int i=R;i>=L;i--){
ret=; query(root[i-],root[st-],,c,((i-st)<<)+mid);
if (ret>g1[mid]||!g1d[mid]) g1[mid]=ret,g1d[mid]=i;
}
solve4(l,mid-,g1d[mid],R);solve4(mid+,r,L,g1d[mid]);
} int main(){
freopen("bzoj4367.in","r",stdin);
freopen("bzoj4367.out","w",stdout);
scanf("%d%d%d",&n,&st,&m);st++;
rep(i,,n) scanf("%d",&b[i]),sta[i]=b[i];
sort(sta+,sta+n+);c=unique(sta+,sta+n+)-sta-;
rep(i,,n) b[i]=lower_bound(sta+,sta+c+,b[i])-sta;
rep(i,,n) ins(root[i-],root[i],,c,b[i],sta[b[i]]);
solve1(,m,st,min(n,st+m)); solve2(,m,max(,st-m),n);
solve3(,m,st,min(n,st+(m>>))); solve4(,m,max(,st-(m>>)),n);
rep(i,,m) ans=max(ans,g1[i]+f[m-i]);
rep(i,,m) ans=max(ans,f1[i]+g[m-i]);
printf("%lld\n",ans);
}
[BZOJ4367][IOI2014]Holiday(决策单调性+分治+主席树)的更多相关文章
- BZOJ 4367 [IOI2014]holiday (决策单调DP+主席树+分治)
题目大意:略 题目传送门 神题,不写长题解简直是浪费了这道题 贪心 考虑从0节点出发的情况,显然一直往前走不回头才是最优策略 如果起点是在中间某个节点$s$,容易想到,如果既要游览$s$左边的某些景点 ...
- [BZOJ5125]小Q的书架(决策单调性+分治DP+树状数组)
显然有决策单调性,但由于逆序对不容易计算,考虑分治DP. solve(k,x,y,l,r)表示当前需要选k段,待更新的位置为[l,r],这些位置的可能决策点区间为[x,y].暴力计算出(l+r)/2的 ...
- P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)
P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...
- 4951: [Wf2017]Money for Nothing 决策单调性 分治
Bzoj4951:决策单调性 分治 国际惯例题面:一句话题面:供应商出货日期为Ei,售价为Pi:用户收购截止日期为Si,收购价格为Gi.我们要求max((Si-Ej)*(Gi-Pj)).显然如果我们把 ...
- [NAIPC2016]Jewel Thief(决策单调性+分治)
[NAIPC2016]Jewel Thief(决策单调性+分治) 题面 原题提交地址(题目编号H) 原题面下载地址 有\(n\)个物品,每个物品有一个体积\(w_i\)和价值\(v_i\),现在要求对 ...
- P3515 [POI2011]Lightning Conductor(决策单调性分治)
P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...
- bzoj1897. tank 坦克游戏(决策单调性分治)
题目描述 有这样一款新的坦克游戏.在游戏中,你将操纵一辆坦克,在一个N×M的区域中完成一项任务.在此的区域中,将会有许多可攻击的目标,而你每摧毁这样的一个目标,就将获得与目标价值相等的分数.只有获得了 ...
- 【BZOJ4367】[IOI2014]holiday假期 分治+主席树
[BZOJ4367][IOI2014]holiday假期 Description 健佳正在制定下个假期去台湾的游玩计划.在这个假期,健佳将会在城市之间奔波,并且参观这些城市的景点.在台湾共有n个城市, ...
- [IOI2014]holiday假期(分治+主席树)
题目描述 健佳正在制定下个假期去台湾的游玩计划.在这个假期,健佳将会在城市之间奔波,并且参观这些城市的景点.在台湾共有n个城市,它们全部位于一条高速公路上.这些城市连续地编号为0到n-1.对于城市i( ...
随机推荐
- table表头固定问题
table表头固定问题 原生的table表头在表格滚动时候无法固定,可以使用以下的方法进行模拟 1. 双table法 表头和表体各用一个table,这样会产生表格列对不齐的问题,可以使用colgrou ...
- CDQZ 2017 游记
Day0: 提前放了一整天假,颓过去了.老吕让我去给B层的讲课,ppt还没做,只能在飞机上赶了QAQ.然后从上午到了衡水就一直在路上或者天上,到了晚上才到学校,然而ppt还是没有做完.还有,鄂尔多斯真 ...
- NOIP2010 引水入城 贪心+DFS
我们先把简单的不能搞死,具题意可证:每个蓄水长的管辖区域一定是连续的.证明:既然我们已经能了那么我们就可以说如果这个区间不是连续的那我们取出这个区间中间阻隔开的那一段,那么对于这一整个区间来说水源不可 ...
- taotao用户登录(及登录成功后的回调url处理)
后台Controller: package com.taotao.sso.controller; import org.springframework.stereotype.Controller; i ...
- java的多构造函数的处理方式
/** * */ package P; import java.awt.List; import java.lang.reflect.Array; import java.util.ArrayList ...
- remove computer from join with powershell
Removes the local computer from its domain. Remove-Computer [-UnjoinDomainCredential] <PSCredenti ...
- 模拟实现jdk动态代理
实现步骤 1.生成代理类的源代码 2.将源代码保存到磁盘 3.使用JavaCompiler编译源代码生成.class字节码文件 4.使用JavaCompiler编译源代码生成.class字节码文件 5 ...
- mongodb安全
1.流程: (1)创建超级管理员 (2)修改配置文件,验证身份登录 (3)重启服务 (4)使用超级管理员登录 (5)创建普通用户 (6)使用普通用户登录对应的数据库 mongodb数据库角色: 1创建 ...
- Kuangbin 带你飞 数位DP题解
以前一直不知道该咋搞这个比较好. 感觉推起来那个数字好麻烦.后来有一种比较好的写法就是直接的DFS写法.相应的ismax表示当前位是否有限制. 数位DP也是有一种类似模版的东西,不过需要好好理解.与其 ...
- ARM 处理器架构【转】
ARM 处理器架构 转自:http://www.arm.com/zh/products/processors/instruction-set-architectures/index.php ARM 架 ...