The Cow Prom
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1451   Accepted: 922

Description

The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their finest gowns, complete with corsages and new shoes. They know that tonight they will each try to perform the Round Dance.

Only cows can perform the Round Dance which requires a set of ropes and a circular stock tank. To begin, the cows line up around a circular stock tank and number themselves in clockwise order consecutively from 1..N. Each cow faces the tank so she can see the other dancers.

They then acquire a total of M (2 <= M <= 50,000) ropes all of which are distributed to the cows who hold them in their hooves. Each cow hopes to be given one or more ropes to hold in both her left and right hooves; some cows might be disappointed.

For the Round Dance to succeed for any given cow (say, Bessie), the ropes that she holds must be configured just right. To know if Bessie's dance is successful, one must examine the set of cows holding the other ends of her ropes (if she has any), along with the cows holding the other ends of any ropes they hold, etc. When Bessie dances clockwise around the tank, she must instantly pull all the other cows in her group around clockwise, too. Likewise, 
if she dances the other way, she must instantly pull the entire group counterclockwise (anti-clockwise in British English).

Of course, if the ropes are not properly distributed then a set of cows might not form a proper dance group and thus can not succeed at the Round Dance. One way this happens is when only one rope connects two cows. One cow could pull the other in one direction, but could not pull the other direction (since pushing ropes is well-known to be fruitless). Note that the cows must Dance in lock-step: a dangling cow (perhaps with just one rope) that is eventually pulled along disqualifies a group from properly performing the Round Dance since she is not immediately pulled into lockstep with the rest.

Given the ropes and their distribution to cows, how many groups of cows can properly perform the Round Dance? Note that a set of ropes and cows might wrap many times around the stock tank.

Input

Line 1: Two space-separated integers: N and M

Lines 2..M+1: Each line contains two space-separated integers A and B that describe a rope from cow A to cow B in the clockwise direction.

Output

Line 1: A single line with a single integer that is the number of groups successfully dancing the Round Dance.

Sample Input

5 4
2 4
3 5
1 2
4 1

Sample Output

1

Hint

Explanation of the sample:

ASCII art for Round Dancing is challenging. Nevertheless, here is a representation of the cows around the stock tank:

       _1___

/**** \

5 /****** 2

/ /**TANK**|

\ \********/

\ \******/ 3

\ 4____/ /

\_______/

Cows 1, 2, and 4 are properly connected and form a complete Round Dance group. Cows 3 and 5 don't have the second rope they'd need to be able to pull both ways, thus they can not properly perform the Round Dance.

Source

 
典型的阅读理解题,看了好久的题其实就是求有向图强连通分量结点数>=2的个数。虽然简单,但是第一次确敲错了好几个小地方,敲代码时一定要专心,下面列出错误
/*
ID: LinKArftc
PROG: 3180.cpp
LANG: C++
*/ #include <map>
#include <set>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <utility>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-8
#define randin srand((unsigned int)time(NULL))
#define input freopen("input.txt","r",stdin)
#define debug(s) cout << "s = " << s << endl;
#define outstars cout << "*************" << endl;
const double PI = acos(-1.0);
const double e = exp(1.0);
const int inf = 0x3f3f3f3f;
const int INF = 0x7fffffff;
typedef long long ll; const int maxn = ;
const int maxm = ; struct Edge {
int v, next;
} edge[maxm]; int head[maxn], tot; void init() {
tot = ;
memset(head, -, sizeof(head));
} void addedge(int u, int v) {
edge[tot].v = v;
edge[tot].next = head[u];
head[u] = tot ++;
} int n, m;
int dfn[maxn], low[maxn];
bool ins[maxn];
int scc, Time;
stack <int> st;
vector <int> vec[maxn]; void tarjan(int u) {
int v;
dfn[u] = low[u] = ++ Time;
st.push(u);
ins[u] = true;
for (int i = head[u]; i + ; i = edge[i].next) {
v = edge[i].v;
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[v], low[u]);
} else if (ins[v]) low[u] = min(low[u], dfn[v]);
}
if (dfn[u] == low[u]) {//刚开始写成dfn[u] == low[v]了
scc ++;
do {
v = st.top();
st.pop();
ins[v] = false;
vec[scc].push_back(v);
} while (u != v);
}
} int main() { //input;
int u, v;
while (~scanf("%d %d", &n, &m)) {
init();
for (int i = ; i <= m; i ++) {//刚开始写成i<=n了
scanf("%d %d", &u, &v);
addedge(u, v);
}
memset(dfn, , sizeof(dfn));
memset(ins, , sizeof(ins));
while (!st.empty()) st.pop();
for (int i = ; i <= n; i ++) vec[i].clear();
scc = ;
Time = ;
for (int i = ; i <= n; i ++) {
if (!dfn[i]) tarjan(i);
}
int ans = ;
for (int i = ; i <= scc; i ++) {
if (vec[i].size() >= ) ans ++;
}
printf("%d\n", ans);
} return ;
}

POJ3180(有向图强连通分量结点数>=2的个数)的更多相关文章

  1. 有向图强连通分量的Tarjan算法和Kosaraju算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  2. 有向图强连通分量Tarjan算法

    在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...

  3. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  4. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  5. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  6. 图的连通性:有向图强连通分量-Tarjan算法

    参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...

  7. 算法笔记_144:有向图强连通分量的Tarjan算法(Java)

    目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连 ...

  8. 有向图强连通分量的Tarjan算法及模板

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...

  9. hdu1269(有向图强连通分量)

    hdu1269 题意 判断对于任意两点是否都可以互相到达(判断有向图强连通分量个数是否为 1 ). 分析 Tarjan 算法实现. code #include<bits/stdc++.h> ...

随机推荐

  1. SVN脱离锁定的几种方法

    SVN经常出现被锁定而无法提交的问题,选择解锁又提示没有文件被锁定,很是头疼.这里整理了一下SVN 被锁定的几种解决方法: 1.出现这个问题后使用“清理”即"Clean up"功能 ...

  2. jmeter的基本使用过程

    jmeter的基本使用过程 接下来几周,我将通过视频的方式,录制下来jmeter的基本用法,方便大家参考学习 可能导图会随时调整

  3. LeetCode 215——数组中的第 K 个最大元素

    1. 题目 在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: 输入: [3,2,1,5,6,4] 和 k = 2 ...

  4. PAT——乙级1015/甲级1062:德才论

    这两个题是一模一样的 1015 德才论 (25 point(s)) 宋代史学家司马光在<资治通鉴>中有一段著名的“德才论”:“是故才德全尽谓之圣人,才德兼亡谓之愚人,德胜才谓之君子,才胜德 ...

  5. spring MVC 字符串数组传值 字符带有逗号,问题

    按照如下图所示方式传值,想在后台得到一个长度为1的数组,后台直接根据,进行分割,就得到长度为2的数组 1.曲线救国解决法 解决方案, 前端对参数进行编码 encodeURIComponent(valu ...

  6. Delphi中取得程序版本号

    Delphi做的程序,如果想包含版本信息, 必须在Delphi的集成编辑环境的菜单“Project/Options/Version Info”里面添加版本信息.即在Version Info 选项卡中选 ...

  7. SQL 取数值小数后两位,但不四舍五入

    select round('1.67789',2,1) /* 1.67*/

  8. 如何控制DBGrid里面显示的浮点数小数点后的位数?

    现在dbgrid里面显示的位数太多,有10几位,根本没办法看.请问怎么设置能控制小数点后的位数呢?在c语言里面是  %7.2f就可以了,可惜不知道dephi里面怎么做啊谢谢各位指点 方法1:  把那些 ...

  9. MongoDB 存储日志数据

    MongoDB 存储日志数据 https://www.cnblogs.com/nongchaoer/archive/2017/01/11/6274242.html 线上运行的服务会产生大量的运行及访问 ...

  10. kudu介绍及安装配置

    kudu介绍及安装配置 介绍 Kudu 是一个针对 Apache Hadoop 平台而开发的列式存储管理器.Kudu 共享 Hadoop 生态系统应用的常见技术特性: 它在 commodity har ...