计数器(counter)

Counter是对字典(无序)类型的补充,用于追踪值的出现次数。

使用counter需要导入 collections 类

ps:具备字典的所有功能 + 自己的功能

1、创建一个计数器

>>> import collections
>>> obj = collections.Counter('aaabbccsdfsdfdfsdfsdf')

2、查看计数器变量

>>> print(obj)
Counter({'d': 5, 'f': 5, 's': 4, 'a': 3, 'c': 2, 'b': 2})

3、查看计数器可使用的方法

>>> dir(obj)
['__add__', '__and__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__iand__', '__init__', '__ior__', '__isub__', '__iter__', '__le__', '__len__', '__lt__', '__missing__', '__module__', '__ne__', '__neg__', '__new__', '__or__', '__pos__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__weakref__', '_keep_positive', 'clear', 'copy', 'elements', 'fromkeys', 'get', 'items', 'keys', 'most_common', 'pop', 'popitem', 'setdefault', 'subtract', 'update', 'values']
########################################################################
### Counter
######################################################################## class Counter(dict):
'''Dict subclass for counting hashable items. Sometimes called a bag
or multiset. Elements are stored as dictionary keys and their counts
are stored as dictionary values. >>> c = Counter('abcdeabcdabcaba') # count elements from a string >>> c.most_common(3) # three most common elements
[('a', 5), ('b', 4), ('c', 3)]
>>> sorted(c) # list all unique elements
['a', 'b', 'c', 'd', 'e']
>>> ''.join(sorted(c.elements())) # list elements with repetitions
'aaaaabbbbcccdde'
>>> sum(c.values()) # total of all counts >>> c['a'] # count of letter 'a'
>>> for elem in 'shazam': # update counts from an iterable
... c[elem] += 1 # by adding 1 to each element's count
>>> c['a'] # now there are seven 'a'
>>> del c['b'] # remove all 'b'
>>> c['b'] # now there are zero 'b' >>> d = Counter('simsalabim') # make another counter
>>> c.update(d) # add in the second counter
>>> c['a'] # now there are nine 'a' >>> c.clear() # empty the counter
>>> c
Counter() Note: If a count is set to zero or reduced to zero, it will remain
in the counter until the entry is deleted or the counter is cleared: >>> c = Counter('aaabbc')
>>> c['b'] -= 2 # reduce the count of 'b' by two
>>> c.most_common() # 'b' is still in, but its count is zero
[('a', 3), ('c', 1), ('b', 0)] '''
# References:
# http://en.wikipedia.org/wiki/Multiset
# http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
# http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
# http://code.activestate.com/recipes/259174/
# Knuth, TAOCP Vol. II section 4.6.3 def __init__(self, iterable=None, **kwds):
'''Create a new, empty Counter object. And if given, count elements
from an input iterable. Or, initialize the count from another mapping
of elements to their counts. >>> c = Counter() # a new, empty counter
>>> c = Counter('gallahad') # a new counter from an iterable
>>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
>>> c = Counter(a=4, b=2) # a new counter from keyword args '''
super(Counter, self).__init__()
self.update(iterable, **kwds) def __missing__(self, key):
""" 对于不存在的元素,返回计数器为0 """
'The count of elements not in the Counter is zero.'
# Needed so that self[missing_item] does not raise KeyError
return 0 def most_common(self, n=None):
""" 数量大于等n的所有元素和计数器 """
'''List the n most common elements and their counts from the most
common to the least. If n is None, then list all element counts. >>> Counter('abcdeabcdabcaba').most_common(3)
[('a', 5), ('b', 4), ('c', 3)] '''
# Emulate Bag.sortedByCount from Smalltalk
if n is None:
return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1)) def elements(self):
""" 计数器中的所有元素,注:此处非所有元素集合,而是包含所有元素集合的迭代器 """
'''Iterator over elements repeating each as many times as its count. >>> c = Counter('ABCABC')
>>> sorted(c.elements())
['A', 'A', 'B', 'B', 'C', 'C'] # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
>>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
>>> product = 1
>>> for factor in prime_factors.elements(): # loop over factors
... product *= factor # and multiply them
>>> product Note, if an element's count has been set to zero or is a negative
number, elements() will ignore it. '''
# Emulate Bag.do from Smalltalk and Multiset.begin from C++.
return _chain.from_iterable(_starmap(_repeat, self.iteritems())) # Override dict methods where necessary @classmethod
def fromkeys(cls, iterable, v=None):
# There is no equivalent method for counters because setting v=1
# means that no element can have a count greater than one.
raise NotImplementedError(
'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') def update(self, iterable=None, **kwds):
""" 更新计数器,其实就是增加;如果原来没有,则新建,如果有则加一 """
'''Like dict.update() but add counts instead of replacing them. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which')
>>> c.update('witch') # add elements from another iterable
>>> d = Counter('watch')
>>> c.update(d) # add elements from another counter
>>> c['h'] # four 'h' in which, witch, and watch '''
# The regular dict.update() operation makes no sense here because the
# replace behavior results in the some of original untouched counts
# being mixed-in with all of the other counts for a mismash that
# doesn't have a straight-forward interpretation in most counting
# contexts. Instead, we implement straight-addition. Both the inputs
# and outputs are allowed to contain zero and negative counts. if iterable is not None:
if isinstance(iterable, Mapping):
if self:
self_get = self.get
for elem, count in iterable.iteritems():
self[elem] = self_get(elem, 0) + count
else:
super(Counter, self).update(iterable) # fast path when counter is empty
else:
self_get = self.get
for elem in iterable:
self[elem] = self_get(elem, 0) + 1
if kwds:
self.update(kwds) def subtract(self, iterable=None, **kwds):
""" 相减,原来的计数器中的每一个元素的数量减去后添加的元素的数量 """
'''Like dict.update() but subtracts counts instead of replacing them.
Counts can be reduced below zero. Both the inputs and outputs are
allowed to contain zero and negative counts. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which')
>>> c.subtract('witch') # subtract elements from another iterable
>>> c.subtract(Counter('watch')) # subtract elements from another counter
>>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
>>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
-1 '''
if iterable is not None:
self_get = self.get
if isinstance(iterable, Mapping):
for elem, count in iterable.items():
self[elem] = self_get(elem, 0) - count
else:
for elem in iterable:
self[elem] = self_get(elem, 0) - 1
if kwds:
self.subtract(kwds) def copy(self):
""" 拷贝 """
'Return a shallow copy.'
return self.__class__(self) def __reduce__(self):
""" 返回一个元组(类型,元组) """
return self.__class__, (dict(self),) def __delitem__(self, elem):
""" 删除元素 """
'Like dict.__delitem__() but does not raise KeyError for missing values.'
if elem in self:
super(Counter, self).__delitem__(elem) def __repr__(self):
if not self:
return '%s()' % self.__class__.__name__
items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
return '%s({%s})' % (self.__class__.__name__, items) # Multiset-style mathematical operations discussed in:
# Knuth TAOCP Volume II section 4.6.3 exercise 19
# and at http://en.wikipedia.org/wiki/Multiset
#
# Outputs guaranteed to only include positive counts.
#
# To strip negative and zero counts, add-in an empty counter:
# c += Counter() def __add__(self, other):
'''Add counts from two counters. >>> Counter('abbb') + Counter('bcc')
Counter({'b': 4, 'c': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count + other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result def __sub__(self, other):
''' Subtract count, but keep only results with positive counts. >>> Counter('abbbc') - Counter('bccd')
Counter({'b': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count - other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count < 0:
result[elem] = 0 - count
return result def __or__(self, other):
'''Union is the maximum of value in either of the input counters. >>> Counter('abbb') | Counter('bcc')
Counter({'b': 3, 'c': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = other_count if count < other_count else count
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result def __and__(self, other):
''' Intersection is the minimum of corresponding counts. >>> Counter('abbb') & Counter('bcc')
Counter({'b': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = count if count < other_count else other_count
if newcount > 0:
result[elem] = newcount
return result

Counter

4、常用的计数器操作

# most_common 输出出现次数最多的字符

>>> import collections
>>> obj = collections.Counter('aaabbccsdfsdfdfsdfsdf')
>>> print(obj.most_common(2))
[('d', 5), ('f', 5)]
# items 计数器以k/v方式输出统计结果

import collections

obj = collections.Counter('aaabbccsdfsdfdfsdfsdf')

for k,v in obj.items():
print(k,v) 输出结果:
f 5
s 4
d 5
a 3
c 2
b 2
# elements 把所有的元素拿到,并进行统计

>>> import collections
>>> obj = collections.Counter('aaabbccsdfsdfdfsdfsdf')
>>> print(obj.elements)
<bound method Counter.elements of Counter({'d': 5, 'f': 5, 's': 4, 'a': 3, 'c': 2, 'b': 2})>
# update 更新计数器中的字符串或字符

import collections

obj = collections.Counter(['', '', '', ''])
print(obj)
obj.update(['eric', '', ''])
print(obj) 输出结果:
Counter({'': 2, '': 1, '': 1})
Counter({'': 3, '': 2, '': 1, 'eric': 1})
# subtract 删除计数器中的字符串

import collections

obj = collections.Counter(['', '', '', ''])
print(obj)
obj.update(['eric', '', ''])
print(obj) obj.subtract(['eric', '', '', 'root'])
print(obj) 输出结果:
Counter({'': 2, '': 1, '': 1})
Counter({'': 3, '': 2, '': 1, 'eric': 1})
Counter({'': 2, '': 1, '': 1, 'eric': 0, 'root': -1})

Python collections系列之计数器的更多相关文章

  1. Python collections系列之有序字典

    有序字典(orderedDict ) orderdDict是对字典类型的补充,他记住了字典元素添加的顺序 1.创建一个有序字典 import collections dic = collections ...

  2. Python collections系列之单向队列

    单向队列(deque) 单项队列(先进先出 FIFO ) 1.创建单向队列 import queue q = queue.Queue() q.put(') q.put('evescn') 2.查看单向 ...

  3. Python collections系列之双向队列

    双向队列(deque) 一个线程安全的双向队列 1.创建一个双向队列 import collections d = collections.deque() d.append(') d.appendle ...

  4. Python collections系列之可命名元组

    可命名元组(namedtuple)  根据nametuple可以创建一个包含tuple所有功能以及其他功能的类 1.创建一个坐标类 import collections # 创建类, defaultd ...

  5. Python collections系列之默认字典

    默认字典(defaultdict)  defaultdict是对字典的类型的补充,它默认给字典的值设置了一个类型. 1.创建默认字典 import collections dic = collecti ...

  6. python递归、collections系列以及文件操作进阶

    global log 127.0.0.1 local2 daemon maxconn log 127.0.0.1 local2 info defaults log global mode http t ...

  7. Python 第三篇(下):collections系列、集合(set)、单双队列、深浅copy、内置函数

     一.collections系列: collections其实是python的标准库,也就是python的一个内置模块,因此使用之前导入一下collections模块即可,collections在py ...

  8. Python之set集合与collections系列

    1>set集合:是一个无序且不重复的元素集合:访问速度快,解决了重复的问题: s2 = set(["che","liu","haha" ...

  9. Python collections模块总结

    Python collections模块总结 除了我们使用的那些基础的数据结构,还有包括其它的一些模块提供的数据结构,有时甚至比基础的数据结构还要好用. collections ChainMap 这是 ...

随机推荐

  1. JSP笔记02——概述(转)

    不完全翻译,结合谷歌,一定主观性,还可能有误,原始内容地址:https://www.tutorialspoint.com/jsp/jsp_overview.htm 主要内容如下: 什么是JSP? 为什 ...

  2. HAproxy 配置参数详解

    HAproxy 配置参数详解 /etc/haproxy/haproxy.cfg # 配置文件 ----------------------------------------------------- ...

  3. 20145240 《Java程序设计》第三次实验报告

    20145240 <Java程序设计>第三次实验报告 北京电子科技学院(BESTI)实验报告 课程:Java程序设计 班级:1452 指导教师:娄嘉鹏 实验日期:2016.04.22 实验 ...

  4. 20145240 《Java程序设计》第四周学习总结

    20145240 <Java程序设计>第四周学习总结 教材学习内容总结 6.1继承 6.1.1 继承共同行为 定义:继承基本上就是避免多个类间重复定义共同行为. 优点:1.提高了代码的复用 ...

  5. iOS_数据存取(一)

    目录: 一.沙盒机制 二.用户偏好设置 三.归档 一.沙盒机制 每个iOS应⽤都有⾃己的应用沙盒(应⽤沙盒就是⽂件系统⽬录),与其他文件系统隔离.应⽤必须待在⾃己的沙盒⾥,其他应用不能访问该应用沙盒的 ...

  6. Ansi 与 Unicode 字符串类型的互相转换

    WideCharToMultiByte 实现宽字节转换到窄字节MultiByteToWideChar 实现窄字节转换到宽字节 WideCharToMultiByte 的代码页用来标记与新转换的字符串相 ...

  7. QT 使用QUdpSocket QUdpServer UDP 建立客户端与服务器端

    1. 模拟天气监控,每隔两秒从Server发送天气信息到Client. 2. 示例代码 --------------------------- Server 端 ------------------- ...

  8. Ceilometer 数据库比较

    Ceilometer和其他OpenStack项目相比,部署中比较不同的是Ceilometer可以选用多种不同的后台数据库来保存测量值和警告器. 目前Ceilometer支持的后台数据库及及其相应的配置 ...

  9. Educational Codeforces Round 33 (Rated for Div. 2)A-F

    总的来说这套题还是很不错的,让我对主席树有了更深的了解 A:水题,模拟即可 #include<bits/stdc++.h> #define fi first #define se seco ...

  10. [转载]java读写word文档,完美解决方案

    做项目的过程中,经常需要把数据里里的数据读出来,经过加工,以word格式输出. 在网上找了很多解决方案都不太理想,偶尔发现了PageOffice,一个国产的Office插件,开发调用非常简单!比网上介 ...