9.5 Predicting Movie Ratings
9.5.1 Problem Formulation
推荐系统。
推荐系统的问题表述:电影推荐。根据用户对已看过电影的打分来推测用户对其未打分的电影将会打什么分。下面对一部电影的打分区间是[0,5]。

做道题:

9.5.2 Content Based Recommendations
推荐系统的一种实现:基于内容的推荐。

对于每个用户i训练一个参数向量Θ(i),对于每部电影j训练一个特征向量x(j)(其中默认x0=1,实际上特征抽取是不容易的),那么(Θ(i))Tx(k)就是用户i可能对电影k的打分。

下面用线性回归解决上面的问题:

注意min式子的正则化部分的Θ有n+1维,但是是从Θ0维度开始计算的。抽离m(j)不影响最小化的结果。

对于每个用户也就是

对于整体也就是

那么可以这么做(梯度下降法等):

做道题:

D

9.6 Collaborative Filtering
9.6.1 Collaborative Filtering
协同过滤(Collaborative Filtering)。协同过滤能够自行学习所要使用的特征。
协同过滤是执行一个算法时,通过一大堆用户得到的数据,由参数矩阵得出特征,再由特征优化参数矩阵。

最小化下面的式子得到特征矩阵:

基于内容的推荐是最小化下面的式子:

注意两者的区别。

做2道题:

A

D

9.6.2 Collaborative Filtering Algorithm
协同过滤算法(Collaborative Filtering Algothrim)。
将对于参数矩阵和特征矩阵的优化结合:下面有3个式子,第一个式子最优化参数矩阵,第二个式子最优化特征矩阵,最后一个式子将两者结合。

这里注意最后一个式子中的Θ(j)和x(i)都是n维向量,没有默认初始的Θ0和x0,和上面的两个式子不一样。

协同过滤算法:

做道题:

9.7 Low Rank Matrix Factorization
9.7.1 Vectorization: Low Rank Matrix Factorization
协同过滤算法的向量化实现以及协同过滤算法的使用实例。
协同过滤算法的向量化实现(低秩矩阵分解):

协同过滤算法的使用实例:比如当前用户买了A电影的票,判断对于电影B,他是否有可能买。

做道题:

9.7.2 Implementational Detail: Mean Normalization
均值归一化:可以使算法运行得更加有效。

例子:如果有一位用户对所有电影都没有评分,为了推测出该用户对某一个具体电影的评分,需要用到均值归一化。

下图中对于某一部电影i,求已经评分的用户j评分Yij的平均数ui,然后Yij=Yij-ui,得到新的矩阵Y。用新的Y来训练得到参数Θ(j),然后Yi5=(Θ(j))T(X(5))+ui

做道题:

练习:

不知道这题为什么错:

Coursera 机器学习 第9章(下) Recommender Systems 学习笔记的更多相关文章

  1. Coursera 机器学习 第7章 Support Vector Machines 学习笔记

    7 Support Vector Machines7.1 Large Margin Classification7.1.1 Optimization Objective支持向量机(SVM)代价函数在数 ...

  2. Coursera 机器学习 第5章 Neural Networks: Learning 学习笔记

    5.1节 Cost Function神经网络的代价函数. 上图回顾神经网络中的一些概念: L  神经网络的总层数. sl  第l层的单元数量(不包括偏差单元). 2类分类问题:二元分类和多元分类. 上 ...

  3. 【机器学习】决策树(Decision Tree) 学习笔记

    [机器学习]决策树(decision tree) 学习笔记 标签(空格分隔): 机器学习 决策树简介 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树).其每个非叶节点表示一个 ...

  4. Coursera 机器学习 第8章(下) Dimensionality Reduction 学习笔记

    8 Dimensionality Reduction8.3 Motivation8.3.1 Motivation I: Data Compression第二种无监督问题:维数约简(Dimensiona ...

  5. Coursera 机器学习 第6章(下) Machine Learning System Design 学习笔记

    Machine Learning System Design下面会讨论机器学习系统的设计.分析在设计复杂机器学习系统时将会遇到的主要问题,给出如何巧妙构造一个复杂的机器学习系统的建议.6.4 Buil ...

  6. Coursera 机器学习 第6章(上) Advice for Applying Machine Learning 学习笔记

    这章的内容对于设计分析假设性能有很大的帮助,如果运用的好,将会节省实验者大量时间. Machine Learning System Design6.1 Evaluating a Learning Al ...

  7. Coursera 机器学习 第9章(上) Anomaly Detection 学习笔记

    9 Anomaly Detection9.1 Density Estimation9.1.1 Problem Motivation异常检测(Density Estimation)是机器学习常见的应用, ...

  8. Coursera 机器学习 第8章(上) Unsupervised Learning 学习笔记

    8 Unsupervised Learning8.1 Clustering8.1.1 Unsupervised Learning: Introduction集群(聚类)的概念.什么是无监督学习:对于无 ...

  9. 郑捷《机器学习算法原理与编程实践》学习笔记(第四章 推荐系统原理)(二)kmeans

    (上接第二章) 4.3.1 KMeans 算法流程 算法的过程如下: (1)从N个数据文档随机选取K个文档作为质心 (2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类 (3)重新计 ...

随机推荐

  1. 【SQL】- 基础知识梳理(七) - 索引

    索引的概念 在关系型数据库中,索引是对数据库表中一列或多列的值进行排序的一种结构. SQL SERVER中有索引的类型:按存储结构区分:“聚集索引(又称聚类索引,簇集索引)”,“分聚集索引(非聚类索引 ...

  2. 搭建基于MinGW平台的《OpenGL蓝皮书(OpenGL SuperBibe 5th)》示例代码编译环境

    副标题:搭建基于MinGW平台的<OpenGL超级宝典>(OpenGL蓝皮书第5版)GLTools 编译环境.示例代码:Triangle.cpp @ SB5.zip 以下内容以及方法均参考 ...

  3. Selenium API(一)

    1.设置浏览器大小: # -*- coding:utf- -*- from selenium import webdriver import time driver = webdriver.Firef ...

  4. 738. Monotone Increasing Digits

    Given a non-negative integer N, find the largest number that is less than or equal to N with monoton ...

  5. Redhat7无法启动mysql

    是这样的,7的这个环境安装了叫MariaDB了 安装MariaDB之后必须先启动MariaDB [root@redhatx ~]# yum -y install mysql [root@redhatx ...

  6. python创建shape

    import shapefile import json import os #shapefile="polygon.shp"; #jsonfile="社区网格.json ...

  7. WebApi接口 - 响应输出xml和json 转

        格式化数据这东西,主要看需要的运用场景,今天和大家分享的是webapi格式化数据,这里面的例子主要是输出json和xml的格式数据,测试用例很接近实际常用情况:希望大家喜欢,也希望各位多多扫码 ...

  8. 搭建git服务器(临时服务器,命令行形式,针对2到5人左右,轻量)

    服务端配置 ############################################################################################## ...

  9. Qt 学习之路 2(27):渐变

    Qt 学习之路 2(27):渐变 豆子 2012年11月20日 Qt 学习之路 2 17条评论 渐变是绘图中很常见的一种功能,简单来说就是可以把几种颜色混合在一起,让它们能够自然地过渡,而不是一下子变 ...

  10. python学习之路---day09

    函数案例: return 可以终止函数后面的调用 def abc() print("1") print("2") print("3") pr ...