Coursera 机器学习 第9章(下) Recommender Systems 学习笔记
9.5 Predicting Movie Ratings
9.5.1 Problem Formulation
推荐系统。
推荐系统的问题表述:电影推荐。根据用户对已看过电影的打分来推测用户对其未打分的电影将会打什么分。下面对一部电影的打分区间是[0,5]。
做道题:
9.5.2 Content Based Recommendations
推荐系统的一种实现:基于内容的推荐。
对于每个用户i训练一个参数向量Θ(i),对于每部电影j训练一个特征向量x(j)(其中默认x0=1,实际上特征抽取是不容易的),那么(Θ(i))Tx(k)就是用户i可能对电影k的打分。
下面用线性回归解决上面的问题:
注意min式子的正则化部分的Θ有n+1维,但是是从Θ0维度开始计算的。抽离m(j)不影响最小化的结果。
对于每个用户也就是
对于整体也就是
那么可以这么做(梯度下降法等):
做道题:
D
9.6 Collaborative Filtering
9.6.1 Collaborative Filtering
协同过滤(Collaborative Filtering)。协同过滤能够自行学习所要使用的特征。
协同过滤是执行一个算法时,通过一大堆用户得到的数据,由参数矩阵得出特征,再由特征优化参数矩阵。
最小化下面的式子得到特征矩阵:
基于内容的推荐是最小化下面的式子:
注意两者的区别。
做2道题:
A
D
9.6.2 Collaborative Filtering Algorithm
协同过滤算法(Collaborative Filtering Algothrim)。
将对于参数矩阵和特征矩阵的优化结合:下面有3个式子,第一个式子最优化参数矩阵,第二个式子最优化特征矩阵,最后一个式子将两者结合。
这里注意最后一个式子中的Θ(j)和x(i)都是n维向量,没有默认初始的Θ0和x0,和上面的两个式子不一样。
协同过滤算法:
做道题:
9.7 Low Rank Matrix Factorization
9.7.1 Vectorization: Low Rank Matrix Factorization
协同过滤算法的向量化实现以及协同过滤算法的使用实例。
协同过滤算法的向量化实现(低秩矩阵分解):
协同过滤算法的使用实例:比如当前用户买了A电影的票,判断对于电影B,他是否有可能买。
做道题:
9.7.2 Implementational Detail: Mean Normalization
均值归一化:可以使算法运行得更加有效。
例子:如果有一位用户对所有电影都没有评分,为了推测出该用户对某一个具体电影的评分,需要用到均值归一化。
下图中对于某一部电影i,求已经评分的用户j评分Yij的平均数ui,然后Yij=Yij-ui,得到新的矩阵Y。用新的Y来训练得到参数Θ(j),然后Yi5=(Θ(j))T(X(5))+ui
做道题:
练习:
不知道这题为什么错:
Coursera 机器学习 第9章(下) Recommender Systems 学习笔记的更多相关文章
- Coursera 机器学习 第7章 Support Vector Machines 学习笔记
7 Support Vector Machines7.1 Large Margin Classification7.1.1 Optimization Objective支持向量机(SVM)代价函数在数 ...
- Coursera 机器学习 第5章 Neural Networks: Learning 学习笔记
5.1节 Cost Function神经网络的代价函数. 上图回顾神经网络中的一些概念: L 神经网络的总层数. sl 第l层的单元数量(不包括偏差单元). 2类分类问题:二元分类和多元分类. 上 ...
- 【机器学习】决策树(Decision Tree) 学习笔记
[机器学习]决策树(decision tree) 学习笔记 标签(空格分隔): 机器学习 决策树简介 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树).其每个非叶节点表示一个 ...
- Coursera 机器学习 第8章(下) Dimensionality Reduction 学习笔记
8 Dimensionality Reduction8.3 Motivation8.3.1 Motivation I: Data Compression第二种无监督问题:维数约简(Dimensiona ...
- Coursera 机器学习 第6章(下) Machine Learning System Design 学习笔记
Machine Learning System Design下面会讨论机器学习系统的设计.分析在设计复杂机器学习系统时将会遇到的主要问题,给出如何巧妙构造一个复杂的机器学习系统的建议.6.4 Buil ...
- Coursera 机器学习 第6章(上) Advice for Applying Machine Learning 学习笔记
这章的内容对于设计分析假设性能有很大的帮助,如果运用的好,将会节省实验者大量时间. Machine Learning System Design6.1 Evaluating a Learning Al ...
- Coursera 机器学习 第9章(上) Anomaly Detection 学习笔记
9 Anomaly Detection9.1 Density Estimation9.1.1 Problem Motivation异常检测(Density Estimation)是机器学习常见的应用, ...
- Coursera 机器学习 第8章(上) Unsupervised Learning 学习笔记
8 Unsupervised Learning8.1 Clustering8.1.1 Unsupervised Learning: Introduction集群(聚类)的概念.什么是无监督学习:对于无 ...
- 郑捷《机器学习算法原理与编程实践》学习笔记(第四章 推荐系统原理)(二)kmeans
(上接第二章) 4.3.1 KMeans 算法流程 算法的过程如下: (1)从N个数据文档随机选取K个文档作为质心 (2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类 (3)重新计 ...
随机推荐
- .Net高级面试宝典
1.in/exists/join 执行效率? 答:用法 select * from HK_UsersBasic where Users_ID in (select AccEmail from dbo ...
- Lua入门(一)
嵌入式语言 作为一门扩展式语言,Lua 没有 "main" 程序的概念: 它只能 嵌入 一个宿主程序中工作, 该宿主程序被称为 被嵌入程序 或者简称 宿主 . 宿主程序可以调用函数 ...
- 以太坊系列之十三: evm指令集
evm指令集手册 Opcodes 结果列为"-"表示没有运算结果(不会在栈上产生值),为"*"是特殊情况,其他都表示运算产生唯一值,并放在栈顶. mem[a.. ...
- 「CF 600E」 Lomsat gelral
题目链接 戳我 \(Describe\) 给出一棵树,每个节点有一个颜色,求每个节点的子树中颜色数目最多的颜色的和. \(Solution\) 这道题为什么好多人都写的是启发式合并,表示我不会啊. 这 ...
- iOS11.0后APP的图标和启动图
随着Xcode9的更新,APP的图标和启动图也发生了略微变化,下面介绍下图标和启动图的设置. 1.APP图标: 这些是系统默认你开发的项目支持iPad.Spotlight等,其实真正我们的项目只要支持 ...
- luoguP3835 [模板]可持久化平衡树
https://www.luogu.org/problemnew/show/P3835 因为博主精力和实力有限,学不懂 fhq treap 了,因此只介绍 leafy tree 解法 leafy tr ...
- [Swift]八大排序算法(二):快速排序
排序分为内部排序和外部排序. 内部排序:是指待排序列完全存放在内存中所进行的排序过程,适合不太大的元素序列. 外部排序:指的是大文件的排序,即待排序的记录存储在外存储器上,待排序的文件无法一次装入内存 ...
- 多线程 NSThread 的使用
NSThread简介 使用NSThread 实现多线程,需要手动管理线程的生命周期, 一.线程的创建 //1.实例方法创建,,需要手动启动线程 NSThread *thread = [[NSThrea ...
- Hibernate学习笔记(二)—— 实体规则&对象的状态&一级缓存
一.持久化类 1.1 什么是持久化类? Hibernate是持久层的ORM映射框架,专注于数据的持久化工作.所谓的持久化,就是将内存中的数据永久存储到关系型数据库中.那么知道了什么是持久化,什么又是持 ...
- 多气体组分DEM流动的DMP并行内存错误
今天踩到一个坑.调DEM反应的时候,气体需要设置为多组分,这时就不能用 DES_INTERP_ON = .T. DES_INTERP_SCHEME = 'GARG_2012' 这个差值格式了,否则DM ...