P1641 [SCOI2010]生成字符串

题目描述

lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数。现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗?

输入输出格式

输入格式:

输入数据是一行,包括2个数字n和m

输出格式:

输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数


思路:模拟卡特兰数的推导过程,找到不合法情况的双射,用总情况-不合法情况即可

答案为\(C_{m+n}^m-C_{m+n}^{m-1}\)


Code:

#include <cstdio>
#define ll long long
const ll mod=20100403;
ll fac[1000010];
ll inv(ll b,ll k)
{
ll f=1;
while(k)
{
if(k&1) f=f*b%mod;
b=b*b%mod;
k>>=1;
}
return f;
}
ll C(ll n,ll m)
{
return fac[m]*inv(fac[n],mod-2)%mod*inv(fac[m-n],mod-2)%mod;
}
int main()
{
ll n,m;
scanf("%lld%lld",&n,&m);
fac[0]=1;
for(int i=1;i<=n+m;i++)
fac[i]=fac[i-1]*i%mod;
printf("%lld\n",((C(m,m+n)-C(m-1,m+n))%mod+mod)%mod);
return 0;
}

2018.8.9

P1641 [SCOI2010]生成字符串的更多相关文章

  1. 卡特兰数 洛谷P1641 [SCOI2010]生成字符串

    卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...

  2. 【洛谷】P1641 [SCOI2010]生成字符串(思维+组合+逆元)

    题目 传送门:QWQ 分析 不想画图. https://www.luogu.org/problemnew/solution/P1641 好神仙的题啊. 代码 // luogu-judger-enabl ...

  3. luogu P1641 [SCOI2010]生成字符串

    传送门 代码极短 \(O(n^2)\)dp是设\(f_{i,j,k}\)表示前\(i\)位,放了\(j\)个1,后面还可以接着放\(k\)个0的方案,转移的话,如果放0,\(k\)就要减1,反之放了1 ...

  4. 洛谷 P1641 [SCOI2010]生成字符串

    洛谷 这题一看就是卡塔兰数. 因为\(cnt[1] \leq cnt[0]\),很显然的卡塔兰嘛! 平时我们推导卡塔兰是用一个边长为n的正方形推的, 相当于从(0,0)点走到(n,n)点,向上走的步数 ...

  5. Luogu P1641 [SCOI2010]生成字符串 组合数学

    神仙.... 当时以为是,$x$代表$1$,$y$代表$0$,所以不能过$y=x$的路径数...结果不会... 然后康题解...ヾ(。`Д´。)竟然向右上是$1$,向右下是$0$.... 所以现在就是 ...

  6. [SCOI2010]生成字符串 题解(卡特兰数的扩展)

    [SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...

  7. [SCOI2010]生成字符串

    题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...

  8. BZOJ1856 [SCOI2010]生成字符串 【组合数】

    题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...

  9. 【洛谷 P1641】 [SCOI2010]生成字符串(Catalan数)

    题目链接 可以看成在坐标系中从\((0,0)\)用\(n+m\)步走到\((n+m,n-m)\)的方案数,只能向右上\((1)\)或者右下\((0)\)走,而且不能走到\(y=-1\)这条直线上. 不 ...

随机推荐

  1. JDK9 新特性

    JDK9 新特性目录导航 目录结构 模块化系统 jshell 多版本兼容JAR 接口的私有方法 改进try-with-resourcs 改进砖石操作符 限制使用单独下划线标识符 String存储结构变 ...

  2. 12.2.1 访问元素的样式【JavaScript高级程序设计第三版】

    任何支持style 特性的HTML 元素在JavaScript 中都有一个对应的style 属性.这个style 对象是CSSStyleDeclaration 的实例,包含着通过HTML 的style ...

  3. Python基础教程学记(1)

    引言 Python是什么?——Python是一种面向对象的解释性高级编程语言,具有动态语义.这句话的要点在于,Python是一种知道如何不妨碍你编写程序的编程语言.它让你能够毫无困难地实现所需的功能, ...

  4. uva 253 - Cube painting(相同骰子)

    习题4-4 骰子涂色(Cube painting, UVa 253) 输入两个骰子,判断二者是否等价.每个骰子用6个字母表示,如图4-7所示. 图4-7 骰子涂色 例如rbgggr和rggbgr分别表 ...

  5. javascript 之 为函数设置默认参数值

    方法一: function example(a,b){ var a = arguments[0] ? arguments[0] : 1;//设置参数a默认为1 var b = arguments[1] ...

  6. Django-Content-type用法

    from django.db import models from django.contrib.contenttypes.models import ContentType from django. ...

  7. Google序列化库FlatBuffers 1.1发布,及与protobuf的比较

    个人总结: FlatBuffer相对于Protobuffer来讲,优势如下: 1. 由于省去了编解码的过程,所以从速度上快于Protobuffer,个人测试结果100w次编解码,编码上FlatBuff ...

  8. svn资源库url问题

    今天连接svn资源库的时候一直出现 RA layer request failedsvn: Unable to connect to a repository at URL http://... sv ...

  9. Spotlight on MySQL

    聚光灯在MySQL 1.Sessios会话Total Users:总用户数前连接到MySQL服务器的用户会话总数Active Users:活跃用户此控件表示连接到当前正在执行SQL语句或其他数据库请求 ...

  10. Jmeter和Charles下载文件

    有时候我们jmeter做自动化测试是会遇到文件上传和文件下载的接口,这里我将接结合Charles来Jmeter 文件下载进行讲解 一.用Charles抓包分析文件下载接口 1.1.业务中文件下载链接如 ...