题目

幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数。 我们的问题就是,每位小朋友应该怎样投票,才能使冲突数最小?

输入格式

第一行只有两个整数n,m,保证有2≤n≤300,1≤m≤n(n-1)/2。其中n代表总人数,m代表好朋友的对数。文件第二行有n个整数,第i个整数代表第i个小朋友的意愿,当它为1时表示同意睡觉,当它为0时表示反对睡觉。接下来文件还有m行,每行有两个整数i,j。表示i,j是一对好朋友,我们保证任何两对i,j不会重复。

输出格式

只需要输出一个整数,即可能的最小冲突数。

输入样例

3 3

1 0 0

1 2

1 3

3 2

输出样例

1

解释

在第一个例子中,所有小朋友都投赞成票就能得到最优解

题解

我们设源汇点S、T,S向赞成的小朋友连边,不赞成的向T连边,好友之间互相连边,容量均为1

此时求最小割即为答案

对于任意一一对好友,他们要么在同一边,要么二者断开【好友冲突】,要么其中一者与源汇点断开【改变意愿】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 305,maxm = 300005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int h[maxn],ne = 0,N,M,d[maxn],vis[maxn],cur[maxn],S,T;
struct EDGE{int to,nxt,f;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],0}; h[v] = ne++;
}
bool bfs(){
queue<int> q;
for (int i = S; i <= T; i++) vis[i] = false,d[i] = INF;
d[S] = 0; q.push(S); int to,u;
while (!q.empty()){
u = q.front(); q.pop();
Redge(u) if (ed[k].f && !vis[to = ed[k].to]){
d[to] = d[u] + 1; vis[to] = true;
q.push(to);
}
}
return vis[T];
}
int dfs(int u,int minf){
if (u == T || !minf) return minf;
int flow = 0,f,to;
if (cur[u] == -2) cur[u] = h[u];
for (int& k = cur[u]; k != -1; k = ed[k].nxt)
if (d[to = ed[k].to] == d[u] + 1 && (f = dfs(to,min(minf,ed[k].f)))){
ed[k].f -= f; ed[k ^ 1].f += f;
flow += f; minf -= f;
if (!minf) break;
}
return flow;
}
int maxflow(){
int flow = 0;
while (bfs()){
fill(cur,cur + maxn,-2);
flow += dfs(S,INF);
}
return flow;
}
int main(){
memset(h,-1,sizeof(h));
N = RD(); M = RD(); S = 0; T = N + 1; int a,b;
REP(i,N) if (RD()) build(S,i,1); else build(i,T,1);
while (M--){
a = RD(); b = RD();
build(a,b,1); build(b,a,1);
}
printf("%d",maxflow());
return 0;
}

BZOJ1934 [Shoi2007]Vote 善意的投票 【最小割】的更多相关文章

  1. 【BZOJ2768】[JLOI2010]冠军调查/【BZOJ1934】[Shoi2007]Vote 善意的投票 最小割

    [BZOJ2768][JLOI2010]冠军调查 Description 一年一度的欧洲足球冠军联赛已经进入了淘汰赛阶段.随着卫冕冠军巴萨罗那的淘汰,英超劲旅切尔西成为了头号热门.新浪体育最近在吉林教 ...

  2. BZOJ 1934: [Shoi2007]Vote 善意的投票 最小割

    1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  3. 【bzoj2768/bzoj1934】[JLOI2010]冠军调查/[Shoi2007]Vote 善意的投票 最小割

    bzoj2768 题目描述 一年一度的欧洲足球冠军联赛已经进入了淘汰赛阶段.随着卫冕冠军巴萨罗那的淘汰,英超劲旅切尔西成为了头号热门.新浪体育最近在吉林教育学院进行了一次大规模的调查,调查的内容就是关 ...

  4. 最小投票BZOJ 1934([Shoi2007]Vote 善意的投票-最小割)

    上班之余抽点时间出来写写博文,希望对新接触的朋友有帮助.今天在这里和大家一起学习一下最小投票 1934: [Shoi2007]Vote 好心的投票 Time Limit: 1 Sec Memory L ...

  5. B1934 [Shoi2007]Vote 善意的投票 最小割

    一开始不太会,结果看完题解就是一个建图的网络流.然后就结了. 题干: 题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人 ...

  6. bzoj1934: [Shoi2007]Vote 善意的投票(显然最小割)

    1934: [Shoi2007]Vote 善意的投票 题目:传送门 题解: 明显的不能再明显的最小割... st连同意的,不同意的连ed 朋友之间两两连边(即双向边) 流量都为1... 为啥: 一个人 ...

  7. bzoj1934 Vote 善意的投票 最小割(最大匹配)

    题目传送门 题目大意:很多小朋友,每个小朋友都有自己的立场,赞成或者反对,如果投了和自己立场不同的票会得到一个能量.又有很多朋友关系,如果一个人和他的一个朋友投的票不同,也会得到一个能量,现在问,通过 ...

  8. bzoj1934: [Shoi2007]Vote 善意的投票

    最大流..建图方式都是玄学啊.. //Dinic是O(n2m)的. #include<cstdio> #include<cstring> #include<cctype& ...

  9. bzoj1934: [Shoi2007]Vote 善意的投票(最小割)

    传送门 考虑源点为同意,汇点为反对,那么只要源点向同意的连边,不同意的向汇点连边,求个最小割就是答案 然后考虑朋友之间怎么办,我们令朋友之间连双向边.这样不管怎么割都能对应一种选择情况.那么还是求一个 ...

随机推荐

  1. 3. 进程间通信IPC

    一.概念 IPC: 1)在linux环境中的每个进程各自有不同的用户地址空间.任何一个进程的全局变量在另一个进程中都看不到,所以进程和进程之间是不能相互访问. 2)如果进程间要交换数据必须通过内核,在 ...

  2. DSP+ARM多核异构开发环境SYSLINK搭建OMAPL138

    DSP+ARM多核异构开发环境搭建OMAPL138 注意: 环境为Ubuntu 12.04 只能是这个环境.我甚至在Ubuntu16.04上面安装了VMware,然后,在装了一个Ubuntu 12.0 ...

  3. Python全栈day 02

    Python全栈day 02 一.循环语句 while 用法 num = 1 while num <= 10: print(num) num += 1 # 循环打印输出1-10 while el ...

  4. Spring BindingResult验证框架Validation特殊用法

    使用注解@Valid(实体属性校验) Springboot实现 Spring实现 一.准备校验时使用的JAR validation-api-1.0.0.GA.jar:JDK的接口: hibernate ...

  5. (数据科学学习手札12)K-means聚类实战(基于R)

    上一篇我们详细介绍了普通的K-means聚类法在Python和R中各自的实现方法,本篇便以实际工作中遇到的数据集为例进行实战说明. 数据说明: 本次实战样本数据集来自浪潮集团提供的美团的商家信息,因涉 ...

  6. Codeforces 845 C Two TVs

    参考:https://blog.csdn.net/xjh_shin/article/details/77491693 #include <iostream> #include <cs ...

  7. P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    P2966 [USACO09DEC]牛收费路径Cow Toll Paths 题目描述 Like everyone else, FJ is always thinking up ways to incr ...

  8. Hackerrank - [Algo] Matrix Rotation

    https://www.hackerrank.com/challenges/matrix-rotation-algo 又是一道耗了两小时以上的题,做完了才想起来,这不就是几年前在POJ上做过的一个同类 ...

  9. 剖析DI

    0x00.前言 当我们研究一些晦涩的源码,上网查阅资料的时候,映入眼帘的总有这么些名词:DIP.IOC.DI.DL.IOC容器这些专业名词.如果不懂这些名词背后的含义,我们内心有可能是这样的: 0x0 ...

  10. 给socks-proxy-agent增加认证

    由于需要使用socks代理,查看了nodejs的各种socks库,最终的结论是socks库是其中最完善的,而socks-proxy-agent是以其为基础的封装,可以直接和http模块对接. 不过在尝 ...