[POI2006]Met

Time Limit: 15 Sec  Memory Limit: 162 MB
Submit: 203  Solved: 108
[Submit][Status][Discuss]

Description

给出一棵N个结点的树,选择L条路径,覆盖这些路径上的结点,使得被覆盖到的结点数最多。

Input

第一行两个正整数N、L(2 <= N <= 1,000,000, 0 <= L <= N)。下面有N-1行,每行两个正整数A和B(1 <= A, B <= N),表示一条边(A,B)。

Output

一个整数,表示最多能覆盖到多少结点。

Sample Input

17 3
1 2
3 2
2 4
5 2
5 6
5 8
7 8
9 8
5 10
10 13
13 14
10 12
12 11
15 17
15 16
15 10

Sample Output

13

HINT

鸣谢Oimaster

Source

 选择路径的代价相同显然考虑贪心。 
首先我们可以按照拓扑关系把原图分层。 
接下来我们考虑,对于每一层来说,我们显然最多选取2*l个点。 
我们最终选的路径一定是l对叶子节点到另一个叶子节点异或是都选。 
又每一个叶子节点一定由上一层的来,所以选叶子节点的话一定会覆盖其他层的点。 
=-=噫 
我知道我说的好乱。 
结论是什么呢? 
对于每一层来说,对答案的贡献是min(2*l,num[dep]) 
num[dep]代表第dep层的节点个数。 
求和即可。 
 
 #include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 1000100
using namespace std;
int head[N],cnt;
int n,l;
int in[N];
int dep[N];
int sum[N];
struct node
{
int from,to,next;
}edge[N<<];
void init()
{
memset(head,-,sizeof(head));
cnt=;
}
void edgeadd(int from,int to)
{
edge[cnt].from=from,edge[cnt].to=to,edge[cnt].next=head[from];
head[from]=cnt++;
}
void topsort()
{
queue<int>q;
for(int i=;i<=n;i++)
{
if(in[i]==)
dep[i]=,q.push(i),sum[]++;
}
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-;i=edge[i].next)
{
int to=edge[i].to;
in[to]--;
if(in[to]==)
{
dep[to]=dep[u]+;
sum[dep[to]]++;
q.push(to);
}
}
}
int ans=;
for(int i=;sum[i];i++)
{
ans+=min(sum[i],*l);
}
printf("%d\n",ans);
}
int main()
{
init();
scanf("%d%d",&n,&l);
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
edgeadd(x,y);
edgeadd(y,x);
in[x]++,in[y]++;
}
topsort();
}

bzoj 1517 [POI2006]Met 贪心的更多相关文章

  1. 模拟 - BZOJ 1510 [POI2006] Kra-The Disks

    BZOJ 1510 [POI2006] Kra-The Disks 描述 Johnny 在生日时收到了一件特殊的礼物,这件礼物由一个奇形怪状的管子和一些盘子组成. 这个管子是由许多不同直径的圆筒(直径 ...

  2. BZOJ 1029 建筑抢修 贪心+堆

    又搞了一晚上OI,编了两道BZOJ和几道NOI题库,临走之前写两篇感想 noip越来越近了,韩大和clove爷已经开始停课虐我们了... 1029: [JSOI2007]建筑抢修 Time Limit ...

  3. [bzoj 2151]种树(贪心)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2151 分析:原型是bzoj 1150(CTSC 2007) 首先DP无法下手,想到贪心.想到贪 ...

  4. BZOJ.5397.circular(随机化 贪心)

    BZOJ 感觉自己完全没做过环上选线段的问题(除了一个2-SAT),所以来具体写一写qwq. 基本完全抄自remoon的题解qwq... (下标从\(0\sim m-1\)) 拆环为链,对于原线段\( ...

  5. bzoj 1513 [POI2006]Tet-Tetris 3D(二维线段树)

    1513: [POI2006]Tet-Tetris 3D Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 540  Solved: 175[Submit ...

  6. bzoj 5185 Lifeguards - 动态规划 - 贪心

    题目传送门 传送点I 传送点II 题目大意 给定$n$个区间,问恰好删去其中$k$个,剩下的区间的并的最大总长度. 显然被包含的区间一定不优.再加上被包含的区间对计数不友好.直接把它删掉. 注意到题目 ...

  7. BZOJ.3252.攻略(贪心 长链剖分/线段树)

    题目链接 贪心,每次选价值最大的一条到根的链.比较显然(不选白不选). 考虑如何维护这个过程.一个点的价值选了就没有了,而它只会影响它子树里的点,可以用DFS序+线段树修改.而求最大值也可以用线段树. ...

  8. BZOJ.4245.[ONTAK2015]OR-XOR(贪心)

    题目链接 从高到低位贪心,判断答案的该位能否为0. 求一个前缀和sum.对于最高位,答案的这一位可以为0当且仅当至少存在m个位置满足sum[i]在这一位上为0. 注意sum[n]这一位必须为0. 如果 ...

  9. BZOJ 3143 游走(贪心+期望+高斯消元)

    一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...

随机推荐

  1. Python3爬虫(十) 数据存储之非关系型数据库MongoDB

    Infi-chu: http://www.cnblogs.com/Infi-chu/ 一.非关系型数据库NoSQL全程是Not Only SQL,非关系型数据库.NoSQL是基于键值对的,不需要经过S ...

  2. 二叉树和二叉查找树--数据结构与算法JavaScript描述(10)

    二叉树和二叉查找树 概念 树是一种非线性的数据结构,以分层的方式存储数据. 树被用来存储具有层级关系的数据,比如文件系统的文件: 树还被用来存储有序列表. 一棵树最上面的节点称为根节点. 如果一个节点 ...

  3. Flask 中文手册 0.10 文档

    Flask 中文手册 0.10 文档 欢迎使用 Flask 欢迎阅读 Flask 文档. 本文档分为几个部分.我推荐您先从 安装 开始,之后再浏览 快速入门 章节. 教程 比快速入门更详细地介绍了如何 ...

  4. 企业级Tomcat部署配置

    1.1 Tomcat简介 Tomcat是Apache软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache.Sun和其他一些公司及个人 ...

  5. [P2387魔法森林

    题面 题意: 给出一个图,边权有两维,a与b. 求1到n的一条路径使得路径经过的边的最大的a与b的和最小,输出最小之和. \(Solution:\) 如果做过这题,那么就显得很简单了很好想了. 又是想 ...

  6. 在 C/C++ 中使用 TensorFlow 预训练好的模型—— 直接调用 C++ 接口实现

    现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过直 ...

  7. pandas DataFrame的查询方法(loc,iloc,at,iat,ix的用法和区别)

    pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pand ...

  8. UVA 11297 Census(二维线段树)

    Description This year, there have been many problems with population calculations, since in some cit ...

  9. 详细讲解Java中方法的重载和重写

    首先讲讲方法的重载: Java的重载就是在类中可以创建多个方法,它们具有相同的名字,但是却有不同的参数. 判断是否重载只有两个条件: 1)相同的方法名 2)不同的参数 具体为: A.方法参数类型不同 ...

  10. 【转】V8 之旅: 垃圾回收器

    垃圾回收器是一把十足的双刃剑.其好处是可以大幅简化程序的内存管理代码,因为内存管理无需程序员来操作,由此也减少了(但没有根除)长时间运转的程序的内存泄漏.对于某些程序员来说,它甚至能够提升代码的性能. ...