皮克定理:

  在一个多边形中。用I表示多边形内部的点数,E来表示多边形边上的点数,S表示多边形的面积。

  满足:S:=I+E/2-1;

解决这一类题可能运用到的:

  求E,一条边(x1,y1,x2,y2)上的点数(包括两个顶点)=gcd(abs(x1-x2),abs(y1-y2))+1;

  求S:刚开始做POJ2954的时候莫名其妙一直WA,用了海伦公式求面积,后来又改用割补法,还是WA。发现面积还是用叉积算的好。

在八十中走廊里看过的书都忘光了啊...这么典型的叉积运用都会选择小学方法...不过至今没弄明白为什么海伦公式和割补法的误差那么大...


POJ2954 

 program poj2954;
var x1,y1,x2,y2,x3,y3,e:longint;
s:extended; function gcd(x,y:longint):longint;
begin
if y= then exit(x) else
exit(gcd(y,x mod y));
end; function calc_area(x1,y1,x2,y2,x3,y3:longint):extended;
begin
exit(abs((x2-x1)*(y3-y1)-(x3-x1)*(y2-y1))/);
end; function solve(x1,y1,x2,y2:longint):longint;
begin
exit(gcd(abs(x1-x2),abs(y1-y2))+);
end; begin
//assign(input,'poj2954.in');reset(input);
//assign(output,'a.out');rewrite(output);
while not eof do
begin
readln(x1,y1,x2,y2,x3,y3);
if (x1=)and(y1=)and(x2=)and(y2=)and(x3=)and(y3=) then halt;
s:=calc_area(x1,y1,x2,y2,x3,y3);
e:=solve(x1,y1,x2,y2)+solve(x1,y1,x3,y3)+solve(x2,y2,x3,y3)-;
writeln(trunc(s-e/+));
end;
end.

POJ1265

 program poj1265;
const maxn=;
type point=record x,y:longint;end;
var t,test,n,e,i,tx,ty:longint;
s:extended;
a:array[-..maxn]of point; function gcd(x,y:longint):longint;
begin
if y= then exit(x) else
exit(gcd(y,x mod y));
end; function cross(p0,p1,p2:point):double;
begin
exit((p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y));
end; begin
//assign(input,'poj1265.in');reset(input);
readln(test);
for t:= to test do
begin
readln(n);
a[].x:=;a[].y:=;
for i:= to n do
begin
readln(tx,ty);
a[i].x:=a[i-].x+tx;
a[i].y:=a[i-].y+ty;
end;
e:=;
for i:= to n- do inc(e,gcd(abs(a[i].x-a[i+].x),abs(a[i].y-a[i+].y)));
s:=;
for i:= to n do s:=s+cross(a[],a[i-],a[i])/;
s:=abs(s);
writeln('Scenario #',t,':');
writeln(trunc(s+-e/),' ',e,' ',s::);
writeln;
end;
end.

[POJ2954&POJ1265]皮克定理的应用两例的更多相关文章

  1. poj1265&&2954 [皮克定理 格点多边形]【学习笔记】

    Q:皮克定理这种一句话的东西为什么还要写学习笔记啊? A:多好玩啊... PS:除了蓝色字体之外都是废话啊...  Part I 1.顶点全在格点上的多边形叫做格点多边形(坐标全是整数) 2.维基百科 ...

  2. Area---poj1265(皮克定理+多边形求面积)

    题目链接:http://poj.org/problem?id=1265 题意是:有一个机器人在矩形网格中行走,起始点是(0,0),每次移动(dx,dy)的偏移量,已知,机器人走的图形是一个多边形,求这 ...

  3. 洛谷 P2735 电网 Electric Fences Label:计算几何--皮克定理

    题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n& ...

  4. USACO 3.4 Electric Fence 皮克定理

    题意:在方格纸上画出一个三角形,求三角形里面包含的格点的数目 因为其中一条边就是X轴,一开始想的是算出两条边对应的数学函数,然后枚举x坐标值求解.但其实不用那么麻烦. 皮克定理:给定顶点坐标均是整点( ...

  5. Gym 101873G - Water Testing - [皮克定理]

    题目链接:http://codeforces.com/gym/101873/problem/G 题意: 在点阵上,给出 $N$ 个点的坐标(全部都是在格点上),将它们按顺序连接可以构成一个多边形,求该 ...

  6. 【TOJ 5103】Electric Fence(皮克定理)

    描述 In this problem, `lattice points' in the plane are points with integer coordinates. In order to c ...

  7. POJ 1265 /// 皮克定理+多边形边上整点数+多边形面积

    题目大意: 默认从零点开始 给定n次x y上的移动距离 组成一个n边形(可能为凹多边形) 输出其 内部整点数 边上整点数 面积 皮克定理 多边形面积s = 其内部整点in + 其边上整点li / 2 ...

  8. Codeforces-GYM101873 G Water Testing 皮克定理

    题意: 给定一个多边形,这个多边形的点都在格点上,问你这个多边形里面包含了几个格点. 题解: 对于格点多边形有一个非常有趣的定理: 多边形的面积S,内部的格点数a和边界上的格点数b,满足如下结论: 2 ...

  9. POJ 2954 /// 皮克定理+叉积求三角形面积

    题目大意: 给定三角形的三点坐标 判断在其内部包含多少个整点 题解及讲解 皮克定理 多边形面积s = 其内部整点in + 其边上整点li / 2 - 1 那么求内部整点就是 in = s + 1 - ...

随机推荐

  1. linux mysql root 忘记密码了,完美解决-费元星站长

    修改MySQL的配置文件(默认为/etc/my.cnf),在[mysqld]下添加一行skip-grant-tables   保存配置文件后,重启MySQL服务 service mysqld rest ...

  2. java堆内存模型

     广泛地说,JVM堆内存被分为两部分——年轻代(Young Generation)和老年代(Old Generation). 年轻代 年轻代是所有新对象产生的地方.当年轻代内存空间被用完时,就会触发垃 ...

  3. eclipse 关闭validating

    1.起因 validating XXX  总是非常的浪费时间,有时候还会造成程序卡死 2.解决 windows - Perferences - Validation build 全部去掉

  4. React开发时候注意点

    JSX 使用jsx的使用,用一个{}包裹起来,例如 const method = {<div> 123 </div>} 使用()小括号,防止分号自动插入 const eleme ...

  5. Jmeter非GUI命令参数说明

    查看帮助 -h, --help print usage information and exit 查看版本 -v, --version print the version information an ...

  6. LeetCode 92 ——反转链表 II

    1. 题目 2. 解答 我们需要先找到第 m 个结点及其上一个结点,然后将从 m 到 n 的结点进行反转,最后依次将 m 到 n 反转后的结点和 n 之后的结点放入原链表中即可. 从前往后依次遍历 m ...

  7. java设计模式之适配器模式以及在java中作用

    适配器作用就是讲一个接口适配到另一个接口,在Java 的I/O类库中有很多这样的需求,如将字符串数据转变成字节数据保存到文件中,将字节数据转变成流数据等. 以InputStreamReader和Out ...

  8. Spring Security 5.0.x 参考手册 【翻译自官方GIT-2018.06.12】

    源码请移步至:https://github.com/aquariuspj/spring-security/tree/translator/docs/manual/src/docs/asciidoc 版 ...

  9. spring-data-jpa 简单使用心得

    对于总是使用mybatis的我,突发奇想的想使用spring-data-jpa搭一个小环境,这几天处处碰壁,现总结如下: 环境采用springboot maven需要导入: <dependenc ...

  10. zuoyebiji