bzoj1833

codevs1359

这道题也是道数位dp 因为0有前导0这一说卡了很久 最后发现用所有位数减1~9的位数就okay.....orzczl大爷 其他就跟51nod那道统计1出现次数一样啦

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
LL read(){
LL ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
LL f[][][],w[],cur=,ans1[],ans2[];
void prepare(){
w[]=; for(int i=;i<=;i++) w[i]=w[i-]*;
for(int i=;i<=;i++) f[][i][i]=;
for(int i=;i<=;i++)
for(int j=;j<=;j++)
for(int k=;k<=;k++){
for(int z=;z<=;z++)
f[i][j][k]+=f[i-][z][k];
if(j==k) f[i][j][k]+=w[i];
}
}
void work1(LL n){
int cur=;
if(!n){ans1[]=; return ;}
while(w[cur]>n) cur--;
LL tot=;
for(int i=;i<cur;i++) tot+=(w[i+]-w[i])*i;
tot+=(n-w[cur]+)*cur;
LL v=n/w[cur];
for(int i=;i<=;i++)
for(int j=;j<v;j++)
ans1[i]+=f[cur][j][i];
ans1[v]=ans1[v]+n%w[cur]+;
n=n%w[cur];
for(int i=cur-;i;i--){
v=n/w[i];
for(int j=;j<=;j++)
for(int k=;k<v;k++) ans1[j]+=f[i][k][j];
ans1[v]=ans1[v]+n%w[i]+;
n=n%w[i];
}
//printf("%lld %lld\n",tot,ans1[0]);
for(int i=;i<=;i++) tot-=ans1[i]; ans1[]=tot;
}
void work2(LL n){
int cur=;
if(!n){ans2[]=; return ;}
while(w[cur]>n) cur--;
LL tot=;
for(int i=;i<cur;i++) tot+=(w[i+]-w[i])*i;
tot+=(n-w[cur]+)*cur;
LL v=n/w[cur];
for(int i=;i<=;i++)
for(int j=;j<v;j++)
ans2[i]+=f[cur][j][i];
ans2[v]=ans2[v]+n%w[cur]+;
n=n%w[cur];
for(int i=cur-;i;i--){
v=n/w[i];
for(int j=;j<=;j++)
for(int k=;k<v;k++) ans2[j]+=f[i][k][j];
if(v) ans2[v]=ans2[v]+n%w[i]+;
n=n%w[i];
}
//printf("%lld %lld\n",tot,ans2[0]);
for(int i=;i<=;i++) tot-=ans2[i]; ans2[]=tot;
}
int main()
{
prepare();
work1(read()-); work2(read());
for(int i=;i<=;i++){
printf("%lld",ans2[i]-ans1[i]);
if(i!=) printf(" ");
}
return ;
}

bzoj1833: [ZJOI2010]count 数字计数 && codevs1359 数字计数的更多相关文章

  1. [BZOJ1833][ZJOI2010]count 数字计数

    [BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...

  2. BZOJ1833 ZJOI2010 count 数字计数 【数位DP】

    BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...

  3. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  4. [BZOJ1833][ZJOI2010]Count数字计数(DP)

    数位DP学傻了,怎么写最后都写不下去了. 这题严格上来说应该不属于数位DP?只是普通DP加上一些统计上的判断吧. 首先复杂度只与数的位数$\omega$有关,所以怎么挥霍都不会超. f[i][j][k ...

  5. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

  6. BZOJ1833 [ZJOI2010]count 数字计数 【数学 Or 数位dp】

    题目 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中仅包含一行两个整数a.b,含义如上所述. 输出格式 输出文件中包含一行10个整数, ...

  7. bzoj1833: [ZJOI2010]count 数字计数&&USACO37 Cow Queueing 数数的梦(数位DP)

    难受啊,怎么又遇到我不会的题了(捂脸) 如题,这是一道数位DP,随便找了个博客居然就是我们大YZ的……果然nb,然后就是改改模版++注释就好的了,直接看注释吧,就是用1~B - 1~A-1而已,枚举全 ...

  8. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  9. 【数位dp】bzoj1833: [ZJOI2010]count 数字计数

    数位dp姿势一直很差啊:顺便庆祝一下1A Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a ...

随机推荐

  1. Spotlight on MySQL

    聚光灯在MySQL 1.Sessios会话Total Users:总用户数前连接到MySQL服务器的用户会话总数Active Users:活跃用户此控件表示连接到当前正在执行SQL语句或其他数据库请求 ...

  2. TestNG执行测试用例的顺序

    import org.openqa.selenium.By;import org.openqa.selenium.WebDriver;import org.openqa.selenium.WebEle ...

  3. LuffyCity-CMDB实战

    第1章 章节一 课时01-ITIL介绍 课时02-CMDB介绍 课时03-CMDB需求讨论 课时04-CMDB需求讨论2 课时05-CMDB表结构设计 课时06-CMDB表结构设计2 课时07-CMD ...

  4. OpenStack配置虚拟机vcpu绑定步骤 转至元数据结尾

    . Changed in compute node: 给宿主机预留资源: 宿主机可用cpu:cpuid – cpuid 宿主机可用内存:25G #vim /etc/nova/nova.conf vcp ...

  5. php+Mysql 页面登录代码

    登录界面设置: <?php/** * Created by xx. * User: msi * Date: 2017/10/26 * Time: 18:12 *///session每次用之前都要 ...

  6. BFS搜索

    参考博客:[算法入门]广度/宽度优先搜索(BFS) 适用问题:一个解/最优解 重点:我们怎么运用队列?怎么记录路径? 假设我们要找寻一条从V0到V6的最短路径.(明显看出这条最短路径就是V0-> ...

  7. (转载)Linux进程间通信

    (在学习linux进程通信,看到一篇很好的文章,转载过来,原文地址是http://www.cnblogs.com/linshui91/archive/2010/09/29/1838770.html) ...

  8. python类学习以及mro--多继承属性查找机制

    版权声明:本文为博主原创文章,未经博主允许不得转载. 还记得什么是新式类和旧式类吗? Python中,一个class继承于object,或其bases class里面任意一个继承于object,这个c ...

  9. Jboss提示:Server already running on localhost

    最近在做项目中,经常遇到JBoss报如下提示:Server already running on localhost.这时Jboss显示已启动,但页面显示不出来.提示中给出了两种解决办法,运行新的服务 ...

  10. BZOJ1927 [Sdoi2010]星际竞速 【费用流】

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MB Submit: 2582  Solved: 1601 [Submit][St ...