使用sklean进行多分类下的二分类
#coding:utf-8
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn import datasets iris = datasets.load_iris() #花萼长度 花萼宽度
X = iris.data[:, 0:2] # we only take the first two features for visualization
#所属种类
y = iris.target print X.shape
print y
#两个因数
n_features = X.shape[1] C = 1.0
kernel = 1.0 * RBF([1.0, 1.0]) # for GPC # Create different classifiers. The logistic regression cannot do
# multiclass out of the box.
classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'),
'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'),
'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),
'L2 logistic (Multinomial)': LogisticRegression(C=C, solver='lbfgs', multi_class='multinomial'),
'GPC': GaussianProcessClassifier(kernel)
} n_classifiers = len(classifiers) plt.figure(figsize=(3 * 2, n_classifiers * 2))
plt.subplots_adjust(bottom=.2, top=.95) #3-9 的100个平均分布的值
xx = np.linspace(3, 9, 100)
#1-5 的100个平均分布的值
yy = np.linspace(1, 5, 100).T #
xx, yy = np.meshgrid(xx, yy) #纵列连接数据 构造虚拟:花萼长度 花萼宽度
Xfull = np.c_[xx.ravel(), yy.ravel()] for index, (name, classifier) in enumerate(classifiers.items()):
classifier.fit(X, y) y_pred = classifier.predict(X)
classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100
print("classif_rate for %s : %f " % (name, classif_rate)) # 查看预测概率
probas = classifier.predict_proba(Xfull)
#3个种类
n_classes = np.unique(y_pred).size
for k in range(n_classes):
plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1)
plt.title("Class %d" % k)
if k == 0:
plt.ylabel(name)
#构造颜色
imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)),extent=(3, 9, 1, 5), origin='lower')
plt.xticks(())
plt.yticks(())
idx = (y_pred == k)
if idx.any():
plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k') ax = plt.axes([0.15, 0.04, 0.7, 0.05])
plt.title("Probability")
plt.colorbar(imshow_handle, cax=ax, orientation='horizontal') plt.show()
使用sklean进行多分类下的二分类的更多相关文章
- ecshop 商品分类页 取得当前分类下的子分类方法
ecshop的商品分类页面category.php 下的分类,默认是取得所有同级父分类以及父类别的子分类.比如,我点击进入是A商品分类的页面 category.php?id=1,事实上 我只需要取得父 ...
- EcShop调用显示指定分类下的子分类方法
ECSHOP首页默认的只有全部分类,还有循环大类以及下面小类的代码,貌似没有可以调用显示指定大类下的子分类代码.于是就有这个文章的产生了,下面由夏日博客来总结下网站建设过程中ECSHOP此类问题的网络 ...
- keras框架下的深度学习(二)二分类和多分类问题
本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分 ...
- Logistic回归二分类Winner or Losser----台大李宏毅机器学习作业二(HW2)
一.作业说明 给定训练集spam_train.csv,要求根据每个ID各种属性值来判断该ID对应角色是Winner还是Losser(0.1分类). 训练集介绍: (1)CSV文件,大小为4000行X5 ...
- 二分类问题 - 【老鱼学tensorflow2】
什么是二分类问题? 二分类问题就是最终的结果只有好或坏这样的一个输出. 比如,这是好的,那是坏的.这个就是二分类的问题. 我们以一个电影评论作为例子来进行.我们对某部电影评论的文字内容为好评和差评. ...
- 根据一个分类id 获取这个分类底下所有子分类的商品信息,根据下面方法查询出所有有关分类id 再 根据这些id去商品表里查询所有商品信息
/** * 检测该分类下所有子分类,并输出ID(包括自己) * 数据库字段 catid pid */ function getChildrenIds ($sort_id){ include_once ...
- Kaggle实战之二分类问题
0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手 ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)
首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...
- NLP系列(3)_用朴素贝叶斯进行文本分类(下)
作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50629110 ...
随机推荐
- 【三分】Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals) B. The Meeting Place Cannot Be Changed
三分显然,要注意EPS必须设成1e-6,设得再小一点都会TLE……坑炸了 #include<cstdio> #include<algorithm> #include<cm ...
- 【高斯消元】【异或方程组】poj1222 EXTENDED LIGHTS OUT
由于每个点的状态受到其自身和周围四个点的影响,所以可以这样建立异或方程组: 引用题解: http://hi.baidu.com/ofeitian/item/9899edce6dc6d3d2974452 ...
- FireDac Pooling
1.建立FDManager的ConnectionDef.并设置此Pooling为True. 2.建立Thread类进行多个FDConnection连接DB. 3.本列是oracle远程数据.如下图: ...
- 认识多渲染目标(Multiple Render Targets)技术 【转】
认识多渲染目标(Multiple Render Targets)技术 首先,渲染到纹理是D3D中的一项高级技术.一方面,它很简单,另一方面它很强大并能产生很多特殊效果. 比如说发光效果,环境映射,阴影 ...
- 一起來玩鳥 Starling Framework(9)Particle
最後,來看看Starling裡一個很炫的功能:Particle.Particle屬於extension,所以要另外下載檔案:Starling-Extension-Particle-System.下載之 ...
- 【枚举】【SDOI 2011】【bzoj 2241】打地鼠
2241: [SDOI2011]打地鼠 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 877 Solved: 557 Description 打地鼠是 ...
- druid.io 海量实时OLAP数据仓库 (翻译+总结) (1)
介绍 我是NDPmedia公司的大数据OLAP的资深高级工程师, 专注于OLAP领域, 现将一个成熟的可靠的高性能的海量实时OLAP数据仓库介绍给大家: druid.io NDPmedia在2014年 ...
- asp.net购物车,订单以及模拟支付宝支付(二)---订单表
购物车准备完毕之后,就要着手订单表的设计了 表结构如下: T_Orders T_OrderBooks 为什么这里要分为两个表? 仔细想想,现实生活中的发票 特地去网上找了一张,不是很清晰 但是,正常人 ...
- IIS支持伪静态(windows 2003)
IIS配置支持伪静态 ISAPI Rewrite 第一:首先我们需要下载一个ISAPI_Rewrite,有精简版和完全版,一般精简版只能对服务器全局进行配置,而完整版可以对服务器上的各个网站进行伪静态 ...
- APK大小的瘦身的总结:
首先是看了博客:http://blog.csdn.net/sw950729/article/details/64919051 时.认为大神我就是马云飞写的非常有道理.全部自己就自己写了一遍.长话短说: ...