#coding:utf-8
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn import datasets iris = datasets.load_iris() #花萼长度 花萼宽度
X = iris.data[:, 0:2] # we only take the first two features for visualization
#所属种类
y = iris.target print X.shape
print y
#两个因数
n_features = X.shape[1] C = 1.0
kernel = 1.0 * RBF([1.0, 1.0]) # for GPC # Create different classifiers. The logistic regression cannot do
# multiclass out of the box.
classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'),
'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'),
'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),
'L2 logistic (Multinomial)': LogisticRegression(C=C, solver='lbfgs', multi_class='multinomial'),
'GPC': GaussianProcessClassifier(kernel)
} n_classifiers = len(classifiers) plt.figure(figsize=(3 * 2, n_classifiers * 2))
plt.subplots_adjust(bottom=.2, top=.95) #3-9 的100个平均分布的值
xx = np.linspace(3, 9, 100)
#1-5 的100个平均分布的值
yy = np.linspace(1, 5, 100).T #
xx, yy = np.meshgrid(xx, yy) #纵列连接数据 构造虚拟:花萼长度 花萼宽度
Xfull = np.c_[xx.ravel(), yy.ravel()] for index, (name, classifier) in enumerate(classifiers.items()):
classifier.fit(X, y) y_pred = classifier.predict(X)
classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100
print("classif_rate for %s : %f " % (name, classif_rate)) # 查看预测概率
probas = classifier.predict_proba(Xfull)
#3个种类
n_classes = np.unique(y_pred).size
for k in range(n_classes):
plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1)
plt.title("Class %d" % k)
if k == 0:
plt.ylabel(name)
#构造颜色
imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)),extent=(3, 9, 1, 5), origin='lower')
plt.xticks(())
plt.yticks(())
idx = (y_pred == k)
if idx.any():
plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k') ax = plt.axes([0.15, 0.04, 0.7, 0.05])
plt.title("Probability")
plt.colorbar(imshow_handle, cax=ax, orientation='horizontal') plt.show()

使用sklean进行多分类下的二分类的更多相关文章

  1. ecshop 商品分类页 取得当前分类下的子分类方法

    ecshop的商品分类页面category.php 下的分类,默认是取得所有同级父分类以及父类别的子分类.比如,我点击进入是A商品分类的页面 category.php?id=1,事实上 我只需要取得父 ...

  2. EcShop调用显示指定分类下的子分类方法

    ECSHOP首页默认的只有全部分类,还有循环大类以及下面小类的代码,貌似没有可以调用显示指定大类下的子分类代码.于是就有这个文章的产生了,下面由夏日博客来总结下网站建设过程中ECSHOP此类问题的网络 ...

  3. keras框架下的深度学习(二)二分类和多分类问题

    本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分 ...

  4. Logistic回归二分类Winner or Losser----台大李宏毅机器学习作业二(HW2)

    一.作业说明 给定训练集spam_train.csv,要求根据每个ID各种属性值来判断该ID对应角色是Winner还是Losser(0.1分类). 训练集介绍: (1)CSV文件,大小为4000行X5 ...

  5. 二分类问题 - 【老鱼学tensorflow2】

    什么是二分类问题? 二分类问题就是最终的结果只有好或坏这样的一个输出. 比如,这是好的,那是坏的.这个就是二分类的问题. 我们以一个电影评论作为例子来进行.我们对某部电影评论的文字内容为好评和差评. ...

  6. 根据一个分类id 获取这个分类底下所有子分类的商品信息,根据下面方法查询出所有有关分类id 再 根据这些id去商品表里查询所有商品信息

    /** * 检测该分类下所有子分类,并输出ID(包括自己) * 数据库字段 catid pid */ function getChildrenIds ($sort_id){ include_once ...

  7. Kaggle实战之二分类问题

    0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手 ...

  8. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)

    首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...

  9. NLP系列(3)_用朴素贝叶斯进行文本分类(下)

    作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50629110 ...

随机推荐

  1. 【AC自动机】【动态规划】poj3691 DNA repair

    http://blog.csdn.net/kk303/article/details/6929641 http://blog.csdn.net/human_ck/article/details/657 ...

  2. 找出分数最高的前两个学生 Exercise05_09

    import java.util.Scanner; /** * @author 冰樱梦 * 时间:2018年下半年 * 题目:找出分数最高的前两个学生 * */ public class Exerci ...

  3. 【R笔记】使用R语言进行异常检测

    本文转载自cador<使用R语言进行异常检测> 本文结合R语言,展示了异常检测的案例,主要内容如下: (1)单变量的异常检测 (2)使用LOF(local outlier factor,局 ...

  4. BUG:Yii登录时 101 net::ERR_CONNECTION_RESET

    Bug描述:YII web入口登录,无法登录一直等待,最终重定向 原因:设置的默认路由DefauRoute中的控制器中有错误,导致无法跳转找指定的路由规则 解决方案:这就多亏了SourceTree了, ...

  5. [转]从此爱上iOS Autolayout

    原文地址 这篇不是autolayout教程,只是autolayout动员文章和经验之谈,在本文第五节友情链接和推荐中,我将附上足够大家熟练使用autolayout的教程.这篇文章两个月前就想写下来,但 ...

  6. Androids中数据库的使用SQLite

    (一) 知识点: SQLite3支持的数据类型:NULL,INTEGER,REAL(浮点数字),TEXT(字符串文本),BLOB(二进制对象),虽然他支持的类型只有五种,但实际上sqlite3也接受v ...

  7. Swift数独游戏优化——C++与OC混编、plist自动生成

    一.为什么要C++与OC混编? 在我之前的数独游戏中涉及到的数独游戏生成算法是参考的网上其他人的算法,是利用C++来实现的.   但是在我的例子中我发现这样存在一定的局限性: 1.我是利用Termin ...

  8. 多IDC GSLB的部署 - ADC技术博客 - 51CTO技术博客

    多IDC GSLB的部署 - ADC技术博客 - 51CTO技术博客 A10

  9. TELNET终端类型选项

    转:http://www.cnpaf.net/Class/Telnet/200408/5.html 1. 命令名称及编号TERMINAL-TYPE242.命令含义IACWILLTERMINAL-TYP ...

  10. [Android Traffic] android 流量计算方法

    android流量简介 流量统计文件:路径/proc/net/dev 打开文件,其中 lo 为本地流量, rmnet0 为3g/2g流量, wlan0 为无线流量. 在/sys/class/net/下 ...