layout: post

title: 训练指南 UVALive - 5135 (双连通分量)

author: "luowentaoaa"

catalog: true

mathjax: true

tags:

- 双连通分量

- 图论

- 训练指南


Mining Your Own Business

UVALive - 5135

题意

在一张无向图中,将一些点涂上黑色,使得删掉图中任何一个点时,每个连通分量至少有一个黑点。问最少能涂几个黑点,并且在涂最少的情况下有几种方案。

显然,一定不能涂割点。对于每一个连通分量,如果有1个割点,则必须涂上分量内除割点之外的任意一个点,如果有多个(2个及以上)割点,则这个分量不需要涂色。如果整张图都没有割点,那么任选两个点涂色即可,之所以要涂两个,是要防止删掉的电恰是黑点的情况。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=998244353;
const int maxn=1e6+50;
const ll inf=0x3f3f3f3f3f3f3f3fLL; struct Edge{
int u,v;
};
///割顶 bccno 无意义
int pre[maxn],iscut[maxn],bccno[maxn],dfs_clock,bcc_cut;
vector<int>G[maxn],bcc[maxn];
stack<Edge>S;
int dfs(int u,int fa){
int lowu = pre[u] = ++dfs_clock;
int child = 0;
for(int i = 0; i < G[u].size(); i++){
int v =G[u][i];
Edge e = (Edge){u,v};
if(!pre[v]){ ///没有访问过
S.push(e);
child++;
int lowv = dfs(v, u);
lowu=min(lowu, lowv); ///用后代更新
if(lowv >= pre[u]){
iscut[u]=true;
bcc_cut++;bcc[bcc_cut].clear(); ///注意 bcc从1开始
for(;;){
Edge x=S.top();S.pop();
if(bccno[x.u] != bcc_cut){bcc[bcc_cut].push_back(x.u);bccno[x.u]=bcc_cut;}
if(bccno[x.v] != bcc_cut){bcc[bcc_cut].push_back(x.v);bccno[x.v]=bcc_cut;}
if(x.u==u&&x.v==v)break;
}
}
}
else if(pre[v] < pre[u] && v !=fa){
S.push(e);
lowu = min(lowu,pre[v]);
}
}
if(fa < 0 && child == 1) iscut[u] = 0;
return lowu;
}
void find_bcc(int n){
memset(pre, 0, sizeof(pre));
memset(iscut, 0, sizeof(iscut));
memset(bccno, 0, sizeof(bccno));
dfs_clock = bcc_cut = 0;
for(int i = 0; i < n;i++)
if(!pre[i])dfs(i,-1);
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
int n,Case=1;
int mx;
while(cin>>n&&n){
for(int i=0;i<2*n;i++)G[i].clear();
mx=-inf;
for(int i=0;i<n;i++){
int u,v;
cin>>u>>v;mx=max(mx,max(u,v));
u--,v--;
G[u].push_back(v);
G[v].push_back(u);
}
find_bcc(mx);
ll ans1=0,ans2=1;
for(int i=1;i<=bcc_cut;i++){
int cut_cnt=0;
for(int j=0;j<bcc[i].size();j++)
if(iscut[bcc[i][j]])cut_cnt++;
if(cut_cnt==1){
ans1++;
ans2*=(ll)(bcc[i].size()-cut_cnt);
}
}
if(bcc_cut==1){
ans1=2;
ans2=ll(bcc[1].size()*(bcc[1].size()*1LL-1LL)/2LL);
}
cout<<"Case "<<Case++<<": "<<ans1<<" "<<ans2<<endl;
}
return 0;
}

训练指南 UVALive - 5135 (双连通分量)的更多相关文章

  1. 训练指南 UVALive - 3523 (双联通分量 + 二分图染色)

    layout: post title: 训练指南 UVALive - 3523 (双联通分量 + 二分图染色) author: "luowentaoaa" catalog: tru ...

  2. 训练指南 UVALive - 4287 (强连通分量+缩点)

    layout: post title: 训练指南 UVALive - 4287 (强连通分量+缩点) author: "luowentaoaa" catalog: true mat ...

  3. 训练指南 UVALive - 3126(DAG最小路径覆盖)

    layout: post title: 训练指南 UVALive - 3126(DAG最小路径覆盖) author: "luowentaoaa" catalog: true mat ...

  4. 训练指南 UVALive - 3415(最大点独立集)

    layout: post title: 训练指南 UVALive - 3415(最大点独立集) author: "luowentaoaa" catalog: true mathja ...

  5. 训练指南 UVALive - 3989(稳定婚姻问题)

    ayout: post title: 训练指南 UVALive - 3989(稳定婚姻问题) author: "luowentaoaa" catalog: true mathjax ...

  6. 训练指南 UVALive - 4043(二分图匹配 + KM算法)

    layout: post title: 训练指南 UVALive - 4043(二分图匹配 + KM算法) author: "luowentaoaa" catalog: true ...

  7. 训练指南 UVALive - 5713(最小生成树 + 次小生成树)

    layout: post title: 训练指南 UVALive - 5713(最小生成树 + 次小生成树) author: "luowentaoaa" catalog: true ...

  8. 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树)

    layout: post title: 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树) author: "luowentaoaa" ca ...

  9. 训练指南 UVALive - 3713 (2-SAT)

    layout: post title: 训练指南 UVALive - 3713 (2-SAT) author: "luowentaoaa" catalog: true mathja ...

随机推荐

  1. HTML5 Canvas圣诞树

    又逢圣诞了,为了让小站NowaMagic有点节日气氛,这里也弄一棵圣诞树放放-大家可以先看下效果. 效果演示 <canvas id="c"></canvas> ...

  2. hbase监控实现

    目前实现的监控概览

  3. jquery中:input和input的区别

    :input表示选择表单中的input,select,textarea,button元素, input仅仅选择input元素. <button>和<input type=" ...

  4. linux 服务器下入侵之后的日志清理

    1.web日志的清理:access.log 和auth.log 位置在/var/log/下面. 2.系统日志存放在:/root/.bash_history

  5. SQLSERVER数据库置疑、可疑、脱机、单用户、紧急模式等的修复

    数据库出现置疑.可疑.脱机.单用户.紧急模式主要是因为数据库的日志文件除了问题,2000和2008修复方式不一样,2008的修复脚本在2000中不适用,主要是不被2000识别. 假设数据库名为:eis ...

  6. [bzoj3532][Sdoi2014]Lis——拆点最小割+字典序+退流

    题目大意 给定序列A,序列中的每一项Ai有删除代价Bi和附加属性Ci.请删除若 干项,使得4的最长上升子序列长度减少至少1,且付出的代价之和最小,并输出方案. 如果有多种方案,请输出将删去项的附加属性 ...

  7. [bzoj3876][AHOI2014]支线剧情——上下界费用流

    题目 传送门 题解 建立s和t,然后s向1连下限0上限inf费用0的边,除1外所有节点向t连下限0上限inf费用0的边,对于每条边下限为1上限为inf费用为经过费用,然后我们只有做上下界网络流构出新图 ...

  8. [Leetcode Week8]Subsets II

    Subsets II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/subsets-ii/description/ Description Given ...

  9. linux内核同步之信号量、顺序锁、RCU、完成量、关闭中断【转】

    转自:http://blog.csdn.net/goodluckwhh/article/details/9006065 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[-] 一信 ...

  10. (六)kernel中文件的读写操作可以使用vfs_read()和vfs_write

    需要在Linux kernel--大多是在需要调试的驱动程序--中读写文件数据.在kernel中操作文件没有标准库可用,需要利用kernel的一些函数,这些函数主要有: filp_open() fil ...