LCA(Lowest Common Ancestors),即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先。

Tarjan是一种离线算法,时间复杂度O(n+Q),Q表示询问次数,其中使用倍增法加速算法。

首先dfs建立二叉树,并标记深度、父节点。

在LCA函数中,交换x、y保证x深度最大,计算深度差,在进行有限次计算后,保持x、y深度一致,再次进行多次倍增,寻找到最近公共祖先

最后计算节点距离差:deep[x]+deep[y]-deep[t]*2

 #include<iostream>
#include<cstdio>
using namespace std; const int MAXN=;
struct Edge
{
int to,next;
}E[MAXN];
int node,head[MAXN];
int deep[MAXN],fa[MAXN][];
bool vis[MAXN];
int n,m,ans;
int a[MAXN]; void insert(int u,int v)
{
E[++node]=(Edge){v,head[u]};head[u]=node;
E[++node]=(Edge){u,head[v]};head[v]=node;
} void dfs(int x)
{
vis[x]=;
for(int i=;i<=;i++)
{
if(deep[x]<(<<i)) break;
fa[x][i]=fa[fa[x][i-]][i-];
}
for(int i=head[x];i;i=E[i].next)
{
if(vis[E[i].to]) continue;
deep[E[i].to]=deep[x]+;
fa[E[i].to][]=x;
dfs(E[i].to);
}
} int lca(int x,int y)
{
if(deep[x]<deep[y]) swap(x,y);
int d=deep[x]-deep[y];
for(int i=;i<=;i++)
if((<<i)&d) x=fa[x][i];
for(int i=;i>=;i--)
if(fa[x][i]!=fa[y][i])
{
x=fa[x][i];
y=fa[y][i];
}
if(x==y) return x;
else return fa[x][];
} int dis(int x,int y)
{
int t=lca(x,y);
return deep[x]+deep[y]-deep[t]*;
} int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
insert(x,y);
}
dfs();
scanf("%d",&m);
for(int i=;i<=m;i++)
scanf("%d",&a[i]);
for(int i=;i<m;i++)
ans+=dis(a[i],a[i+]);
printf("%d",ans);
return ;
}

LCA最近公共祖先——Tarjan模板的更多相关文章

  1. LCA 最近公共祖先 tarjan离线 总结 结合3个例题

    在网上找了一些对tarjan算法解释较好的文章 并加入了自己的理解 LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通 ...

  2. lca最近公共祖先(模板)

    洛谷上的lca模板题--传送门 学了求lca的tarjan算法(离线),在洛谷上做模板题,结果后三个点超时. 又把询问改成链式前向星,才ok. 这个博客,tarjan分析的很详细. 附代码-- #in ...

  3. HDU 4547 CD操作 (LCA最近公共祖先Tarjan模版)

    CD操作 倍增法  https://i.cnblogs.com/EditPosts.aspx?postid=8605845 Time Limit : 10000/5000ms (Java/Other) ...

  4. LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现

    首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句话说,就是两个点在这棵 ...

  5. LCA最近公共祖先 Tarjan离线算法

    学习博客:  http://noalgo.info/476.html 讲的很清楚! 对于一颗树,dfs遍历时,先向下遍历,并且用并查集维护当前节点和父节点的集合.这样如果关于当前节点(A)的关联节点( ...

  6. LCA 最近公共祖先 (模板)

    #include <iostream> #include <stdio.h> #include <cstring> #include <vector> ...

  7. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  8. LCA(最近公共祖先)模板

    Tarjan版本 /* gyt Live up to every day */ #pragma comment(linker,"/STACK:1024000000,1024000000&qu ...

  9. LCA 近期公共祖先 小结

    LCA 近期公共祖先 小结 以poj 1330为例.对LCA的3种经常使用的算法进行介绍,分别为 1. 离线tarjan 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tarjan / ...

随机推荐

  1. drupal node机制理解

    [1]根据结构的功能结构的不同,drupal划分为,node,user,comment等不同的结构,他们的结构是不同的.他们可以作为四个不同的抽象类,根据这个抽象类,分别有一套hook函数去控制实现的 ...

  2. gsap

    TweenMax借助于css,轻量级的js库 下面是简单的demo <!DOCTYPE html> <html lang="en"> <head> ...

  3. Linux虚拟系统安装——Ubuntu18.04 & CentOS6.5

    Linux虚拟系统安装--Ubuntu18.04 & CentOS6.5 摘要:Linux简介.虚拟系统安装.系统备份与文件介绍 1. Linux简介 (1)1968年,MIT.Bell实验室 ...

  4. Hbase到Solr同步常用操作

    Hbase到Solr同步常用操作 1. 整体流程 2. 常用操作 Hbase常用操作 Solr常用操作 hbase-index常用操作 3. 其他资料 Lily HBase Indexer使用整理 h ...

  5. boost库的配置——Linux篇

    Boost库分为两个部分来使用,一是直接使用对应的头文件,二是需要编译安装相应的库才可以使用. 下面是boost在Linux上安装和使用过程(整个boost库全部安装): (1)在www.boost. ...

  6. Python 基于固定 IP 来命名 ARM 虚拟机的实现

    问题描述 希望通过 Python 批量创建 ARM 虚拟机,并且在虚拟机命名时加入固定 IP 信息,方便管理维护. 问题分析 在创建 ARM 虚拟机之前,先创建固定 IP,然后获取固定 IP 地址,创 ...

  7. ICONIX Process

    1.像rup,iconix是用例驱动的但是比rup更轻量级.  iconix 仅仅使用四种diagram(用例图.健壮性图.时序图.类图)就可以把用例文本转成代码. 2.值得注意的健壮性分析图并不是u ...

  8. Flask入门模板Jinja2语法与函数(四)

    1 模板的创建 模板文件结构: project/ templates/ 模板文件 跳转模板一般使用: from flask import render_template,render_template ...

  9. 一个自动生成awr报告的shell脚本

    最近在学习shell编程,搞一点点小工具自动完成awr报告的收集工作,方便系统出现问题时问题排查.脚本内容如下,系统收集每天开始时间6点结束时间20点的awr报告并存储在/u01/shell_t/aw ...

  10. matlab中换行

    若在命令窗口中,如果一条语句已经写完,需要换行,可以用"Shift+Enter", 如果一条语句没写完就想换行,可以使用"...+Enter".