★skip-gram的关键术语与详细解释:
 
【语料】——
  所有句子文档(当然会出现大量重复的单词)
【词典(可用V维的onehot编码来表示)】——
  语料中出现的所有单词的集合(去除了重复词)
【窗口大小(上下文词语数量m)】——
  即指定中心词后我们关注的上下文数量定为该中心词前m个词和后m个词(一共2m个上下文词)。
【词典中心词向量矩阵(下图d×V维的W矩阵)】——
  通俗来说词典中心词向量矩阵是由词典中的一个单词的词向量组合而成的(每一列就是词典中的一个单词的词向量),而每一个词的词向量就是假设我们的词典包含了d个维度的抽象信息。
  这d个维度储存的抽象信息:从模型的角度来说就是作为中心词而言,它与上下文会出现词之间的对应关系信息,从语言学的角度来说这样的对应关系也很大程度上反映了词性、语义、句法特征方面的信息。
【词典上下文词向量矩阵(下图的V×d维的W'矩阵)】——
  类似词典中心词向量矩阵,但这里的词向量中d个维度储存的抽象信息,是作为上下文的词而言,它与中心词之间的对应关系信息。
【最后Softmax归一化后输出的概率向量(下图p(x|c)】——
  就是词典中每个词成为当前指定中心词的上下文的概率。我们要让这个概率向量,逼近真实语料中基于指定中心词基础上这些上下文词语出现的条件概率分布。
  Skip-gram每一轮指定一个中心词的2m个上下文词语来训练该中心词词向量和词典上下文词向量,下一轮则指定语料中下一个中心词,查看其2m个上下文词语来训练。
  如果下一轮出现了之前出现过的中心词,之前那一轮可能着重训练的是中心词词向量和词典上下文词向量的几个维度值(关系信息),但由于这一轮是另外一个语境(上下文的2m个词有差异),所以这一轮着重训练的可能就是词向量中的另外几个维度值(关系信息),与之前的不一样。
 

 
★skip-gram的核心:
 
        通过查看所有语料的词作为中心词时,其(中心词)与上下文的2m个词语的所有共现情况,这样就得到我们要逼近的中心词与上下文对应关系的条件概率分布(这个概率分布是忽视掉了上下文词语间的顺序的),我们通过模型去训练出词典中心词向量矩阵和词典上下文词向量矩阵(这两个矩阵就是存储了语料中中心词与其上下文的对应关系信息)。

【原创】关于skip-gram的个人理解的更多相关文章

  1. Word2vec 理解

    1.有DNN做的word2vec,取隐藏层到softmax层的权重为词向量,softmax层的叶子节点数为词汇表大小 2-3的最开始的词向量是随机初始化的 2.哈夫曼树:左边走 sigmoid(当前节 ...

  2. Kafka理解

    1. 引言 最近使用Kafka做消息队列时,完成了基本的消息发送与接收,已上线运行.一方面防止出现Bug时自己不能及时定位问题,一方面网上的配置可能还可以更加优化,决定去了解下Kafka. 2. 配置 ...

  3. 摘:Windows系统内存计数器理解解析_备忘录_51Testing软件测试网...

    [原创]Windows系统内存计数器理解解析 2008-05-13 11:42:23 / 个人分类:性能测试 说明:本文的计数器以Windows2003为准. 序言;F9n)\%V1a6Z C)?ZV ...

  4. DeepLearning.ai学习笔记(五)序列模型 -- week2 自然语言处理与词嵌入

    一.词汇表征 首先回顾一下之前介绍的单词表示方法,即one hot表示法. 如下图示,"Man"这个单词可以用 \(O_{5391}\) 表示,其中O表示One_hot.其他单词同 ...

  5. 利用 TensorFlow 入门 Word2Vec

    利用 TensorFlow 入门 Word2Vec 原创 2017-10-14 chen_h coderpai 博客地址:http://www.jianshu.com/p/4e16ae0aad25 或 ...

  6. Tensorflow 的Word2vec demo解析

    简单demo的代码路径在tensorflow\tensorflow\g3doc\tutorials\word2vec\word2vec_basic.py Sikp gram方式的model思路 htt ...

  7. DLNg序列模型第二周NLP与词嵌入

    1.使用词嵌入 给了一个命名实体识别的例子,如果两句分别是“orange farmer”和“apple farmer”,由于两种都是比较常见的,那么可以判断主语为人名. 但是如果是榴莲种植员可能就无法 ...

  8. 基于双向LSTM和迁移学习的seq2seq核心实体识别

    http://spaces.ac.cn/archives/3942/ 暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下.模型的效果不是最好的,但是胜在“端到端”, ...

  9. DeepNLP的核心关键/NLP词的表示方法类型/NLP语言模型 /词的分布式表示/word embedding/word2vec

    DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NL ...

随机推荐

  1. PAT 1066 Root of AVL Tree

    #include <cstdio> #include <cstdlib> class Node { public: Node* L; Node* R; int height; ...

  2. 原生js获取手机定位信息

    <script type="text/javascript"> function Location() {}; Location.prototype.getLocati ...

  3. textarea高度随着内容的多少而变化,高度可以删减

    问题:可以多行输入,并且输入框的高度随着内容的多少而变化,输入框的高度不能只增不减 由于 input 只能单行输入 textarea可以多行输入,并且高度可以随着内容的增加而增加,但是当内容删减的时候 ...

  4. CSS中font-family:中文字体对应的英文名称

    中文字体 对应英文字体 宋体 SimSun 黑体 SimHei 微软雅黑 Microsoft YaHei 微软正黑体 Microsoft JhengHei 新宋体 NSimSun 新细明体 PMing ...

  5. Myeclipse中进行JUnit单元测试

    最近学习了在myeclipse中进行单元测试,写点东西总结总结. JUnit单元测试: 测试对象为一个类中的方法. juint不是javase中的部分,所以必须导入jar包,但是myeclipse自带 ...

  6. .NET开源工作流RoadFlow-表单设计-附件管理

    在表单中添加一个附件管理的控件: 文件类型:指定可以上传的文件类型.

  7. 如何保护好我们的比特币(bitcoin)

    转自:http://8btc.com/thread-819-1-1.html 随着比特币(BTC)的使用者越来越多:价格也很高(2013年,1比特币价格长期在100美元以上):同时比特币没有一个中央机 ...

  8. 如何开放 Azure 虚拟机 Ping 功能

    前言 文章<使用 PsPing & PaPing 进行 TCP 端口连通性测试>中提到,ICMP 协议的数据包无法通过 Azure 的防火墙和负载均衡器,所以不能直接使用 Ping ...

  9. mongodb 3.4 学习 (五)备份&恢复

    备份恢复命令 mongodump -h 127.0.0.1 -p 27017 -o /opt/backup -u app -p '@app' --collection demo --db app -- ...

  10. oracle 12c使用dblink克隆pdb

    Multitenant : Hot Clone a Remote PDB or Non-CDB in Oracle Database 12c Release 2 (12.2)https://oracl ...