题意:给出m个模式串,要求你构造长度为n(n <= 2000000000)的主串,主串不包含模式串,问这样的主串有几个

思路:因为要不包含模式串,显然又是ac自动机。因为n很大,所以用dp不太好。

在图论中,如果我们知道一个图的邻接矩阵A,$A_{ij}$ = 1表示i走一步到j有一条路,那么$A^n$中的$A_{ij}$就是这个图中从i走n步到j的路径数。

所以用ac自动机我们创造一个所有后缀的邻接矩阵A,那么用矩阵快速幂$A^n$就求出了所有的路径数,$\sum_{i = 1}^n A_{0i}$就是从root走到所有可行后缀的所有走法。

代码:

#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 100 + 5;
const int M = 50 + 5;
const ull seed = 131;
const double INF = 1e20;
const int MOD = 100000;
int m, tn;
ll n;
struct Mat{
ll s[maxn][maxn];
};
Mat mul(Mat &a, Mat &b){
Mat t;
memset(t.s, 0, sizeof(t.s));
for(int i = 0; i < tn; i++){
for(int j = 0; j < tn; j++){
for(int k = 0; k < tn; k++){
t.s[i][j] = (t.s[i][j] + a.s[i][k] * b.s[k][j])%MOD;
}
}
}
return t;
}
Mat ppow(Mat a, ll b){
Mat ret;
memset(ret.s, 0, sizeof(ret.s));
for(int i = 0; i < maxn; i++) ret.s[i][i] = 1;
while(b){
if(b & 1) ret = mul(ret, a);
a = mul(a, a);
b >>= 1;
}
return ret;
}
int id(char a){
if(a == 'A') return 0;
if(a == 'T') return 1;
if(a == 'C') return 2;
if(a == 'G') return 3;
}
struct Aho{
struct state{
int next[4];
int fail, cnt;
}node[maxn];
int size;
queue<int> q; void init(){
size = 0;
newtrie();
while(!q.empty()) q.pop();
} int newtrie(){
memset(node[size].next, 0, sizeof(node[size].next));
node[size].cnt = node[size].fail = 0;
return size++;
} void insert(char *s){
int len = strlen(s);
int now = 0;
for(int i = 0; i < len; i++){
int c = id(s[i]);
if(node[now].next[c] == 0){
node[now].next[c] = newtrie();
}
now = node[now].next[c];
}
node[now].cnt = 1;
} void build(){
node[0].fail = -1;
q.push(0); while(!q.empty()){
int u = q.front();
q.pop();
if(node[node[u].fail].cnt && u) node[u].cnt = 1; //都不能取
for(int i = 0; i < 4; i++){
if(!node[u].next[i]){
if(u == 0)
node[u].next[i] = 0;
else
node[u].next[i] = node[node[u].fail].next[i];
}
else{
if(u == 0) node[node[u].next[i]].fail = 0;
else{
int v = node[u].fail;
while(v != -1){
if(node[v].next[i]){
node[node[u].next[i]].fail = node[v].next[i];
break;
}
v = node[v].fail;
}
if(v == -1) node[node[u].next[i]].fail = 0;
}
q.push(node[u].next[i]);
}
}
}
} void query(){
Mat a;
memset(a.s, 0, sizeof(a.s));
for(int i = 0; i < size; i++){
for(int j = 0; j < 4; j++){
if(node[node[i].next[j]].cnt == 0){
a.s[i][node[i].next[j]]++;
}
}
}
a = ppow(a, n);
ll ans = 0;
for(int i = 0; i < size; i++){
if(node[i].cnt == 0) ans = (ans + a.s[0][i]) % MOD;
}
printf("%lld\n", ans);
} }ac;
char s[20];
int main(){
while(~scanf("%d%lld", &m, &n)){
ac.init();
while(m--){ scanf("%s", s);
ac.insert(s);
}
ac.build();
tn = ac.size;
ac.query();
}
return 0;
}

POJ 2778 DNA Sequence(AC自动机 + 矩阵快速幂)题解的更多相关文章

  1. poj 2778 DNA Sequence ac自动机+矩阵快速幂

    链接:http://poj.org/problem?id=2778 题意:给定不超过10串,每串长度不超过10的灾难基因:问在之后给定的长度不超过2e9的基因长度中不包含灾难基因的基因有多少中? DN ...

  2. POJ - 2778 ~ HDU - 2243 AC自动机+矩阵快速幂

    这两题属于AC自动机的第二种套路通过矩阵快速幂求方案数. 题意:给m个病毒字符串,问长度为n的DNA片段有多少种没有包含病毒串的. 根据AC自动机的tire图,我们可以获得一个可达矩阵. 关于这题的t ...

  3. POJ 2778 DNA Sequence (AC自动机,矩阵乘法)

    题意:给定n个不能出现的模式串,给定一个长度m,要求长度为m的合法串有多少种. 思路:用AC自动机,利用AC自动机上的节点做矩阵乘法. #include<iostream> #includ ...

  4. [poj2778]DNA Sequence(AC自动机+矩阵快速幂)

    题意:有m种DNA序列是有疾病的,问有多少种长度为n的DNA序列不包含任何一种有疾病的DNA序列.(仅含A,T,C,G四个字符) 解题关键:AC自动机,实际上就是一个状态转移图,注意能少取模就少取模, ...

  5. poj2778 DNA Sequence(AC自动机+矩阵快速幂)

    Description It's well known that DNA Sequence is a sequence only contains A, C, T and G, and it's ve ...

  6. POJ 2778 DNA Sequence ( AC自动机、Trie图、矩阵快速幂、DP )

    题意 : 给出一些病毒串,问你由ATGC构成的长度为 n 且不包含这些病毒串的个数有多少个 分析 : 这题搞了我真特么久啊,首先你需要知道的前置技能包括 AC自动机.构建Trie图.矩阵快速幂,其中矩 ...

  7. POJ 2778 DNA Sequence (AC自动机+DP+矩阵)

    题意:给定一些串,然后让你构造出一个长度为 m 的串,并且不包含以上串,问你有多少个. 析:很明显,如果 m 小的话 ,直接可以用DP来解决,但是 m 太大了,我们可以认为是在AC自动机图中,根据离散 ...

  8. poj2778DNA Sequence (AC自动机+矩阵快速幂)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud DNA Sequence Time Limit: 1000MS   Memory ...

  9. poj 2778 DNA Sequence AC自动机DP 矩阵优化

    DNA Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11860   Accepted: 4527 Des ...

  10. poj 2778 DNA Sequence AC自动机

    DNA Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11860   Accepted: 4527 Des ...

随机推荐

  1. Docker 拉取镜像速度太慢

    Docker Hub 是我们分发和获取 Docker 镜像的中心,但由于服务器位于海外,经常会出现拉取/上传镜像时速度太慢或无法访问的情况.再加上运营方不断对 Docker Hub 的免费使用进行限制 ...

  2. Vue3 源码之 reactivity

    注: 为了直观的看到 Vue3 的实现逻辑, 本文移除了边缘情况处理.兼容处理.DEV环境的特殊逻辑等, 只保留了核心逻辑 vue-next/reactivity 实现了 Vue3 的响应性, rea ...

  3. Java反序列化: 基于CommonsCollections4的Gadget分析 Java 序列化与反序列化安全分析

    Java反序列化: 基于CommonsCollections4的Gadget分析 welkin 京东安全 5天前 https://mp.weixin.qq.com/s/OqIWUsJe9XV39SPN ...

  4. layui的tabletree扩展组件

    需求:点击父级菜单展示子级菜单 难点:某个父级菜单下面有5000条子级菜单(有点坑),当我想把这5000条子级菜单塞到父级菜单下面的时候完蛋了,页面卡死了... 解决:tabletree这组件我发现用 ...

  5. 反向传播(Back Propagation)

    反向传播(Back Propagation) 通常在设计好一个神经网络后,参数的数量可能会达到百万级别.而我们利用梯度下降去跟新参数的过程如(1).但是在计算百万级别的参数时,需要一种有效计算梯度的方 ...

  6. PowerBI数据建模时的交叉连接问题

    方案一.在PowerPivot中,将其中一张表复制多份,分别与另一张表做链接. 方案二.在PowerQuery中,做多次合并查询,把所有数据集中在一张表中,方便后面的数据分析. 思考:不仅仅是在Pow ...

  7. Go语言学习-main和init

    main 函数和 init 函数Go里面有两个保留的函数: init 函数(能够应用于所有的 package )和 main 函数(只能应用于 package main ).这两个函数在定义时不能有任 ...

  8. 设计模式(十)——组合模式(HashMap源码解析)

    1 看一个学校院系展示需求 编写程序展示一个学校院系结构:需求是这样,要在一个页面中展示出学校的院系组成,一个学校有多个学院, 一个学院有多个系.如图: 2 传统方案解决学校院系展示 3 传统方案解决 ...

  9. SpringSecurity注解的使用

    @Secured 判断用户具有某个角色,可以访问方法 开启注解功能 使用注解先要开启注解功能!可以在启动类上,也可以在配置类上添加 @EnableGlobalMethodSecurity(secure ...

  10. Codeforces Round #647 (Div. 2) D. Johnny and Contribution(BFS)

    题目链接:https://codeforces.com/contest/1362/problem/D 题意 有一个 $n$ 点 $m$ 边的图,每个结点有一个从 $1 \sim n$ 的指定数字,每个 ...