Spark - Clustering

官方文档:https://spark.apache.org/docs/2.2.0/ml-clustering.html

这部分介绍MLlib中的聚类算法;

目录:

  • K-means:

    • 输入列;
    • 输出列;
  • Latent Dirichlet allocation(LDA):
  • Bisecting k-means;
  • Gaussian Mixture Model(GMM):
    • 输入列;
    • 输出列;

K-means

k-means是最常用的聚类算法之一,它将数据聚集到预先设定的N个簇中;

KMeans作为一个预测器,生成一个KMeansModel作为基本模型;

输入列

Param name Type(s) Default Description
featuresCol Vector features Feature vector

输出列

Param name Type(s) Default Description
predictionCol Int prediction Predicted cluster center

例子

from pyspark.ml.clustering import KMeans

# Loads data.
dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") # Trains a k-means model.
kmeans = KMeans().setK(2).setSeed(1)
model = kmeans.fit(dataset) # Evaluate clustering by computing Within Set Sum of Squared Errors.
wssse = model.computeCost(dataset)
print("Within Set Sum of Squared Errors = " + str(wssse)) # Shows the result.
centers = model.clusterCenters()
print("Cluster Centers: ")
for center in centers:
print(center)

LDA

LDA是一个预测器,同时支持EMLDAOptimizer和OnlineLDAOptimizer,生成一个LDAModel作为基本模型,专家使用者如果有需要可以将EMLDAOptimizer生成的LDAModel转为DistributedLDAModel;

from pyspark.ml.clustering import LDA

# Loads data.
dataset = spark.read.format("libsvm").load("data/mllib/sample_lda_libsvm_data.txt") # Trains a LDA model.
lda = LDA(k=10, maxIter=10)
model = lda.fit(dataset) ll = model.logLikelihood(dataset)
lp = model.logPerplexity(dataset)
print("The lower bound on the log likelihood of the entire corpus: " + str(ll))
print("The upper bound on perplexity: " + str(lp)) # Describe topics.
topics = model.describeTopics(3)
print("The topics described by their top-weighted terms:")
topics.show(truncate=False) # Shows the result
transformed = model.transform(dataset)
transformed.show(truncate=False)

Bisecting k-means

Bisecting k-means是一种使用分裂方法的层次聚类算法:所有数据点开始都处在一个簇中,递归的对数据进行划分直到簇的个数为指定个数为止;

Bisecting k-means一般比K-means要快,但是它会生成不一样的聚类结果;

BisectingKMeans是一个预测器,并生成BisectingKMeansModel作为基本模型;

与K-means相比,二分K-means的最终结果不依赖于初始簇心的选择,这也是为什么通常二分K-means与K-means结果往往不一样的原因;

from pyspark.ml.clustering import BisectingKMeans

# Loads data.
dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") # Trains a bisecting k-means model.
bkm = BisectingKMeans().setK(2).setSeed(1)
model = bkm.fit(dataset) # Evaluate clustering.
cost = model.computeCost(dataset)
print("Within Set Sum of Squared Errors = " + str(cost)) # Shows the result.
print("Cluster Centers: ")
centers = model.clusterCenters()
for center in centers:
print(center)

Gaussian Mixture Model(GMM)

GMM表示一个符合分布,从一个高斯子分布中提取点,每个点都有其自己 的概率,spark.ml基于给定数据通过期望最大化算法来归纳最大似然模型实现算法;

输入列

Param name Type(s) Default Description
featuresCol Vector features Feature vector

输出列

Param name Type(s) Default Description
predictionCol Int prediction Predicted cluster center
probabilityCol Vector probability Probability of each cluster

例子

from pyspark.ml.clustering import GaussianMixture

# loads data
dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") gmm = GaussianMixture().setK(2).setSeed(538009335)
model = gmm.fit(dataset) print("Gaussians shown as a DataFrame: ")
model.gaussiansDF.show(truncate=False)

Spark中的聚类算法的更多相关文章

  1. Spark中常用的算法

    Spark中常用的算法: 3.2.1 分类算法 分类算法属于监督式学习,使用类标签已知的样本建立一个分类函数或分类模型,应用分类模型,能把数据库中的类标签未知的数据进行归类.分类在数据挖掘中是一项重要 ...

  2. Spark MLlib中KMeans聚类算法的解析和应用

    聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为.兴趣等来构建推荐系统. 核心思想可以理解为,在给定的数据集中(数据集中的每个元素有可被观察的n个属性), ...

  3. Matlab中K-means聚类算法的使用(K-均值聚类)

    K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小. 使用方法:Idx=Kmeans(X,K)[Idx,C]=Kmeans(X,K) [Idx, ...

  4. 机器学习中K-means聚类算法原理及C语言实现

    本人以前主要focus在传统音频的软件开发,接触到的算法主要是音频信号处理相关的,如各种编解码算法和回声消除算法等.最近切到语音识别上,接触到的算法就变成了各种机器学习算法,如GMM等.K-means ...

  5. Spark MLlib KMeans 聚类算法

    一.简介 KMeans 算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把分类样本点分到各个簇.然后按平均法重新计算各个簇的质心,从而确定新的簇心.一直迭代,直到簇心的移动距离小于某个给定的值. ...

  6. SPARK在linux中的部署,以及SPARK中聚类算法的使用

    眼下,SPARK在大数据处理领域十分流行.尤其是对于大规模数据集上的机器学习算法.SPARK更具有优势.一下初步介绍SPARK在linux中的部署与使用,以及当中聚类算法的实现. 在官网http:// ...

  7. Spark MLlib架构解析(含分类算法、回归算法、聚类算法和协同过滤)

    Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基 ...

  8. Spark MLBase分布式机器学习系统入门:以MLlib实现Kmeans聚类算法

    1.什么是MLBaseMLBase是Spark生态圈的一部分,专注于机器学习,包含三个组件:MLlib.MLI.ML Optimizer. ML Optimizer: This layer aims ...

  9. Spark:聚类算法

    Spark:聚类算法 Kmeans聚类 KMeans算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇.然后按平均法重新计算各个簇的质心,从而确定新的簇心.一直迭代,直到簇 ...

随机推荐

  1. 20分钟理清Maven构建中的测试相关工具的关系

    如果你用Maven进行系统构建,同时还要同步编写测试用例,获取用例成功与否以及用例覆盖率的相关报告,那么这些工具你肯定接触过不少: JUnit TestNG maven-surefire-plugin ...

  2. soso官方:搜索引擎的对检索结果常用的评测方法

    http://www.wocaoseo.com/thread-188-1-1.html       很久很久以前,搜索引擎还不象今天的百花齐放,人们对它的要求较低,只要它能把互连网上相关的网站搜出来, ...

  3. 面经手册 · 第8篇《LinkedList插入速度比ArrayList快?你确定吗?》

    作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 你以为考你个数据结构是要造火箭? 汽车75马力就够奔跑了,那你怎么还想要2.0涡轮+ ...

  4. CRMEB单商户商城系统v4.0源码,含前端uni-app源码

    CRMEB商城系统是基于ThinkPhp6.0+Vue开发的一套新零售移动电商系统,CRMEB系统就是集客户关系管理+营销电商系统,能够快速积累客户.会员数据分析.智能转化客户. 有效提高销售.会员维 ...

  5. 善用Bash history 命令

    大家好,我是良许 相信大家平时都有用 history 命令来查看命令历史记录,但是实际上 history 命令并非只有这个功能,history 还有很多有用的功能.尤其是 Bash 版本的 histo ...

  6. Android Studio 如何导出和导入自己的常用设置,避免重复制造轮子。加快开发速度

    Android Studio 如何导出和导入自己的常用设置,避免重复制造轮子.加快开发速度 作者:程序员小冰,CSDN博客:http://blog.csdn.net/qq_21376985 在使用 A ...

  7. 免费获取 IntelliJ IDEA 激活码的 6 种方式!

    你还在满世界找 IntelliJ IDEA 激活码? 破解的不稳定,也是违法的,有安全风险还不一定,不建议大家使用来历不明的补丁. 今天栈长就分享免费获取 IntelliJ IDEA 的 6 种方式, ...

  8. 【IDEA】【SpringBoot】基于idea对springboot程序远程调试

    一.开启远程调试前提:本地代码与服务器代码一致(实测:不关键的代码稍微有点不一样好像也不会有多大问题). 二.开启远程调试步骤 1.开发工具配置 idea端打开Edit configurations, ...

  9. JVM学习第二天(垃圾回收器和内存分配策略)大章

    说道垃圾回收器大家应该都会有所了解,GC白,当然说道具体的可能就不是很清楚了,今天我们就来玩一玩; GC要做的事情: 第一步:确定堆中需要回收的对象; 第二步:什么时候回收; 第三步:怎样回收 为什么 ...

  10. C010:书号分解ISBN

    代码: #include "stdafx.h" int _tmain(int argc, _TCHAR* argv[]) { int prefix,groupIndentifier ...