O、Θ、Ω&主定理
1.这些是时间复杂度的。(e.g. O(n)、Θ(n)、Ω(n))
主要为主定理(坏东西)
2.本质
O | <= |
---|---|
Θ | = |
Ω | >= |
3.(你可以把他们都试一遍)主要用处(目前,2020-09-24):
如:
\\
if: T(n)=aT(\frac{n}{b})+f(n)
\\
1.若f(n)=O(n^{log_ba-ε})\ and\ ε>0
\\
那么T(n)=Θ(n^{log_ba})
\\
2.f(n)=Θ(n^{log_ba})
\\
那么T(n)=Θ(n^{log_ba}logn)
\\
3.
f(n)=Ω(n^{log_ba+ε})\ and \ ε>0且对于某个常数c<1和所有充分大的n有af(\frac{n}{b}\leqslant cf(n))
\\
那么T(n)=Θ(f(n))
\]
4.主要为我的O、Θ、Ω文章。
5.
QAQ
\]
O、Θ、Ω&主定理的更多相关文章
- [BZOJ4007][JLOI2015]战争调度(DP+主定理)
第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了. 重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献. 设k为总结点数,对于 ...
- 主定理(Master Theorem)与时间复杂度
1. 问题 Karatsuba 大整数的快速乘积算法的运行时间(时间复杂度的递推关系式)为 T(n)=O(n)+4⋅T(n/2),求其最终的时间复杂度. 2. 主定理的内容 3. 分析 所以根据主定理 ...
- 对主定理(Master Theorem)的理解
前言 虽说在学OI的时候学到了非常多的有递归结构的算法或方法,也很清楚他们的复杂度,但更多时候只是能够大概脑补这些方法为什么是这个复杂度,而从未从定理的角度去严格证明他们.因此借着这个机会把主定理整个 ...
- 算法设计与分析 - 主定理Master theorem (分治法递推时间复杂度)
英文原版不上了 直接中文 定义 假设有递推关系式T(n)=aT(n/b)+f(n) 其中n为问题规模 a为递推的子问题数量 n/b为每个子问题的规模(假设每个子问题的规模基本一样) f(n)为递推以外 ...
- [自用]多项式类数学相关(定理&证明&板子)
写在前面 由于上一篇总结的版面限制,特开此文来记录 \(OI\) 中多项式类数学相关的问题. 该文启发于Miskcoo的博客,甚至一些地方直接引用,在此特别说明:若文章中出现错误,烦请告知. 感谢你的 ...
- [总结]多项式类数学相关(定理&证明&板子)
目录 写在前面 前置技能 多项式相关 多项式的系数表示 多项式的点值表示 复数相关 复数的意义 复数的基本运算 单位根 代码相关 多项式乘法 快速傅里叶变换 DFT IDFT 算法实现 递归实现 迭代 ...
- Master定理学习笔记
前言 \(Master\)定理,又称主定理,用于程序的时间复杂度计算,核心思想是分治,近几年\(Noip\)常考时间复杂度的题目,都需要主定理进行运算. 前置 我们常见的程序时间复杂度有: \(O(n ...
- 数据结构和算法(Golang实现)(10)基础知识-算法复杂度主方法
算法复杂度主方法 有时候,我们要评估一个算法的复杂度,但是算法被分散为几个递归的子问题,这样评估起来很难,有一个数学公式可以很快地评估出来. 一.复杂度主方法 主方法,也可以叫主定理.对于那些用分治法 ...
- 算法:第一节课Master定理
1.ctex:要求用Tex编辑器进行作业的书写 2.与东大本科有差距,还需要多点努力才行. 3. 4.考试不考概念 5. 6.时间复杂度和空间复杂度 7.算法好坏的评价标准 8.基本运算 9.时间复杂 ...
随机推荐
- Reinforcement learning in artificial and biological systems
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract 在生物和人工系统的学习研究之间,已经有富有成果的概念和想法流.Bush and Mosteller,Rescorla a ...
- Soft-to-Hard Vector Quantization for End-to-End Learning Compressible Representations
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 我们提出了一种新的方法,通过端到端的训练策略来学习深度架构中的可压缩表征.我们的方法是基于量化和熵的软(连续)松弛,我 ...
- 【python系统学习17】python中的文件读写
python中的文件读写 文件读写,是Python代码调用电脑文件的主要功能,能被用于读取和写入文本.音频片段.Excel文档.邮件以及任何保存在电脑上的东西. 可使用python批量的操作本地文件, ...
- 10、Entity Framework Core 3.1入门教程-执行原生SQL
本文章是根据 微软MVP solenovex(杨旭)老师的视频教程编写而来,再加上自己的一些理解. 视频教程地址:https://www.bilibili.com/video/BV1xa4y1v7rR ...
- Ant Design Vue使用支持v-model效验的FormModel表单遇到的一个坑
按照官网上用法写好表单后,在a-select上绑定了change事件 <a-form-model-item label="类型" prop="config.type ...
- CF1349A Orac and LCM 题解
题意分析 给出$n$个数,求这$n$个数两两的最小公倍数的最大公约数 思路分析 通过分析样例可以发现,如果要成为这$n$个数两两的最小公倍数的公约数,至少要是这$n$个数中$n-1$个数的约数,否则就 ...
- JVM基于栈的解释器执行原理
通过下面这段代码来解释JVM基于栈的执行原理 4. public static int add(int a, int b) { 5. int c = 0; 6. c = a + b; 7. retur ...
- Illegal instruction报错 c/c++
报错 # ./agent Illegal instruction# 原因 myLog(log4cplus::INFO_LOG_LEVEL, g_p_debugLog, "sendLog ip ...
- Android开发之Eclipse与Android Studio的java类 作者版权模板
/** * 作者:${USER} on ${DATE} ${HOUR}:${MINUTE} * * 联系QQ:986945193 * * 微博:http://weibo.com/mcxiaobing ...
- 简介&目录
欢迎来到 MK 的博客鸭~ 这里会被我用来发一些OI算法.数据结构的学习笔记,各种游记和其他的一些内容,希望大家多多关照! ε≡٩(๑>₃<)۶ 然后目录就也放这里⑧: