poj3252 Round Numbers (数位dp)
Description
The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first.
They can't even flip a coin because it's so hard to toss using hooves.
They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,
otherwise the second cow wins.
A positive integer N is said to be a "round number" if the binary representation of N has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus,
9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.
Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.
Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ Start < Finish ≤ 2,000,000,000).
Input
Output
Sample Input
2 12
Sample Output
6
题意:一个数位round数,要满足这个数化成二进制后0的个数大于等于1的个数。
思路:先预处理出dp[i][j]表示前i位有j个0的方案数,然后从高位到低位数位dp就行了。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 805
ll dp[40][40];
void init()
{
int i,j;
memset(dp,0,sizeof(dp));
dp[1][1]=1;dp[1][0]=1;
for(i=1;i<=32;i++){
for(j=0;j<=i;j++){
dp[i+1][j]+=dp[i][j];
dp[i+1][j+1]+=dp[i][j];
}
}
}
ll solve(int x)
{
int i,j,t=x;
int wei[40],len=0;
while(t){
wei[++len]=t%2;
t/=2;
}
ll sum=0;
int num0=0,num1=0;
for(i=len-1;i>=1;i--){ //这里先把第len位变为0,然后一次枚举最高的位数在第i位
for(j=0;j<=i-1;j++){
if(j>=i-j)sum+=dp[i-1][j];
}
}
num1=1;
for(i=len-1;i>=1;i--){ //这里是在第len位为1的情况下进行dp
if(wei[i]==1){
if(i==1){
if(num0+1>=num1)sum++;
}
else{
for(j=0;j<=i-1;j++){
if(j+num0+1>=num1+i-1-j ){
sum+=dp[i-1][j];
}
}
}
num1++;
}
else num0++;
}
return sum;
}
int main()
{
int n,m,i,j;
init();
while(scanf("%d%d",&m,&n)!=EOF)
{
printf("%lld\n",solve(n+1)-solve(m));
}
return 0;
}
这题也可以用记忆化搜索做,搜索比直接dp要好些,而且用途广,写的时候在dfs中加一维zero,表示当前这一位是不是任然是前导0.用dp[pos][num0][num1]表示前pos位0的个数为num0,1的个数为num1方案数。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
int dp[35][35][35];
int wei[35];
int dfs(int pos,int num0,int num1,int lim,int zero)
{
int i,j;
if(pos==0){
if(zero==0){ //这里不判断zero==0也可以,判不判断的区别在于是不是把0算上,判断就不把0算上了
if(num0>=num1)return 1;
else return 0;
}
return 0;
/*
if(num0>=num1)return 1;
return 0;
*/
}
if(lim==0 && dp[pos][num0][num1]!=-1){
return dp[pos][num0][num1];
}
int ed=lim?wei[pos]:1;
int ans=0,nu0,nu1;
for(i=0;i<=ed;i++){
if(zero && i==0){
nu0=nu1=0;
}
else{
if(i==0){
nu0=num0+1;
nu1=num1;
}
else{
nu0=num0;
nu1=num1+1;
}
}
ans+=dfs(pos-1,nu0,nu1,lim&&i==ed,zero&&i==0 );
}
if(lim==0){
dp[pos][num0][num1]=ans;
}
return ans;
}
int solve(int x)
{
int i,j,tot=0;
while(x){
wei[++tot]=x%2;
x/=2;
}
return dfs(tot,0,0,1,1);
}
int main()
{
int n,m,i,j;
memset(dp,-1,sizeof(dp));
while(scanf("%d%d",&m,&n)!=EOF)
{
printf("%d\n",solve(n)-solve(m-1));
}
return 0;
}
poj3252 Round Numbers (数位dp)的更多相关文章
- POJ3252 Round Numbers —— 数位DP
题目链接:http://poj.org/problem?id=3252 Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Su ...
- poj3252 Round Numbers[数位DP]
地址 拆成2进制位做dp记搜就行了,带一下前导0,将0和1的个数带到状态里面,每种0和1的个数讨论一下,累加即可. WA记录:line29. #include<iostream> #inc ...
- 【poj3252】 Round Numbers (数位DP+记忆化DFS)
题目大意:给你一个区间$[l,r]$,求在该区间内有多少整数在二进制下$0$的数量$≥1$的数量.数据范围$1≤l,r≤2*10^{9}$. 第一次用记忆化dfs写数位dp,感觉神清气爽~(原谅我这个 ...
- [poj3252]Round Numbers_数位dp
Round Numbers poj3252 题目大意:求一段区间内Round Numbers的个数. 注释:如果一个数的二进制表示中0的个数不少于1的个数,我们就说这个数是Round Number.给 ...
- poj 3252 Round Numbers(数位dp 处理前导零)
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- 4-圆数Round Numbers(数位dp)
Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 14947 Accepted: 6023 De ...
- POJ 3252 Round Numbers(数位dp&记忆化搜索)
题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...
- POJ - 3252 - Round Numbers(数位DP)
链接: https://vjudge.net/problem/POJ-3252 题意: The cows, as you know, have no fingers or thumbs and thu ...
- Round Numbers(数位DP)
Round Numbers http://poj.org/problem?id=3252 Time Limit: 2000MS Memory Limit: 65536K Total Submiss ...
随机推荐
- vue中选中弹出框内的表格
一:可多选情况且对应勾选 由于是弹出框形式,所以会出现新增DOM与数据的改变问题,因此要使用$nextTick,不然一开始弹出得时候DOM还没有生成,却要获取DOM会报错:这种多选情况会出现一个bug ...
- 隐马尔科夫模型(HMM)原理详解
隐马尔可夫模型(Hidden Markov Model,HMM)是可用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM在语音识别.自然语言处理.生物信息.模 ...
- python--or 和 and 表达式
or表达式: 两边为一真一假,返回真: 两边都为假,返回右边: 两边都为真,返回左边: and表达式: 两边为一真一假,返回假: 两边都为假,返回左边: 两边都为真,返回右边:
- Amazon Selling Partner API 开发笔记
资料整理 1.sp-api介绍:https://developer.amazonservices.com/ 2.github文档:https://github.com/amzn/selling-par ...
- 时序数据库 Apache-IoTDB 源码解析之元数据索引块(六)
上一章聊到 TsFile 索引块的详细介绍,以及一个查询所经过的步骤.详情请见: 时序数据库 Apache-IoTDB 源码解析之文件索引块(五) 打一波广告,欢迎大家访问 IoTDB 仓库,求一波 ...
- Netty服务端Server代码说明
本文是简单的Netty启动服务端代码理解笔记 public class MyServer { public static void main(String[] args) throws Excepti ...
- 订单业务楼层化 view管理器和model管理器进行了model和view的全面封装处理 三端不得不在每个业务入口上线时约定好降级开关,于是代码中充满了各种各样的降级开关字段
京东APP订单业务楼层化技术实践解密 原创 杜丹 留成 博侃 京东零售技术 2020-09-29 https://mp.weixin.qq.com/s/2oExMjh70Kyveiwh8wOBVA 用 ...
- javamail发送邮件,支持yahoo,google,163.com,qq.com邮件发送
https://www.iteye.com/blog/fangyunfeng-1847352 https://blog.csdn.net/weixin_38465623/article/details ...
- LDAP学习
.top pre { display: block; background: rgba(68, 67, 65, 1); color: rgba(255, 255, 255, 1); margin: 1 ...
- TCMalloc源码学习(三)(小块内存分配)
线程本地cache 线程本地cache对应的是类 ThreadCache,每一个thread一个实例,初始化代码在static函数CreateCacheIfNecessary中, 在该线程第一次申请内 ...