尝试一些用KNN来做数字识别,测试数据来自:
MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges
http://yann.lecun.com/exdb/mnist/

1、数据
将位图转为向量(数组),k尝试取值3-15,距离计算采用欧式距离。
d(x,y)=\sqrt{\sum_{i=1}^{n}(x_i-y_i)^2}

2、测试
调整k的取值和基础样本数量,测试得出k取值对识别正确率的影响,以及分类识别的耗时。

如何用python解析mnist图片 - 海上扬凡的博客 - 博客频道 - CSDN.NET
http://blog.csdn.net/u014046170/article/details/47445919

# -*- coding: utf-8 -*-
"""
Created on Wed Mar 08 14:38:15 2017

@author: zapline<278998871@qq.com>
"""

import struct
import os
import numpy

def read_file_data(filename):
    f = open(filename, 'rb')
    buf = f.read()
    f.close()
    return buf

def loadImageDataSet(filename):
    index = 0
    buf = read_file_data(filename)
    magic, images, rows, columns = struct.unpack_from('>IIII' , buf , index)
    index += struct.calcsize('>IIII')
    data = numpy.zeros((images, rows * columns))
    for i in xrange(images):
        imgVector = numpy.zeros((1, rows * columns)) 
        for x in xrange(rows):
            for y in xrange(columns):
                imgVector[0, x * columns + y] = int(struct.unpack_from('>B', buf, index)[0])
                index += struct.calcsize('>B')
        data[i, :] = imgVector
    return data

def loadLableDataSet(filename):
    index = 0
    buf = read_file_data(filename)
    magic, images = struct.unpack_from('>II' , buf , index)
    index += struct.calcsize('>II')
    data = []
    for i in xrange(images):
        lable = int(struct.unpack_from('>B', buf, index)[0])
        index += struct.calcsize('>B')
        data.append(lable)
    return data

def loadDataSet():
    path = "D:\\kingsoft\\ml\\dataset\\"
    trainingImageFile = path + "train-images.idx3-ubyte"
    trainingLableFile = path + "train-labels.idx1-ubyte"
    testingImageFile = path + "t10k-images.idx3-ubyte"
    testingLableFile = path + "t10k-labels.idx1-ubyte"
    train_x = loadImageDataSet(trainingImageFile)
    train_y = loadLableDataSet(trainingLableFile)
    test_x = loadImageDataSet(testingImageFile)
    test_y = loadLableDataSet(testingLableFile)
    return train_x, train_y, test_x, test_y

# -*- coding: utf-8 -*-
"""
Created on Wed Mar 08 14:35:55 2017

@author: zapline<278998871@qq.com>
"""

import numpy

def kNNClassify(newInput, dataSet, labels, k):
    numSamples = dataSet.shape[0]
    diff = numpy.tile(newInput, (numSamples, 1)) - dataSet
    squaredDiff = diff ** 2
    squaredDist = numpy.sum(squaredDiff, axis = 1)
    distance = squaredDist ** 0.5
    sortedDistIndices = numpy.argsort(distance)

classCount = {}
    for i in xrange(k):
        voteLabel = labels[sortedDistIndices[i]]
        classCount[voteLabel] = classCount.get(voteLabel, 0) + 1

maxCount = 0
    for key, value in classCount.items():
        if value > maxCount:
            maxCount = value
            maxIndex = key
    return maxIndex

# -*- coding: utf-8 -*-
"""
Created on Wed Mar 08 14:39:21 2017

@author: zapline<278998871@qq.com>
"""

import dataset
import knn

def testHandWritingClass():
    print "step 1: load data..."
    train_x, train_y, test_x, test_y = dataset.loadDataSet()

print "step 2: training..."
    pass

print "step 3: testing..."
    numTestSamples = test_x.shape[0]
    matchCount = 0
    for i in xrange(numTestSamples):
        predict = knn.kNNClassify(test_x[i], train_x, train_y, 3)
        if predict == test_y[i]:
            matchCount += 1
    accuracy = float(matchCount) / numTestSamples

print "step 4: show the result..."
    print 'The classify accuracy is: %.2f%%' % (accuracy * 100)
 
testHandWritingClass()
print "game over"

总结:上述代码跑起来比较慢,但是在train数据够多的情况下,准确率不错

后端程序员之路 13、使用KNN进行数字识别的更多相关文章

  1. 后端程序员之路 12、K最近邻(k-Nearest Neighbour,KNN)分类算法

    K最近邻(k-Nearest Neighbour,KNN)分类算法,是最简单的机器学习算法之一.由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重 ...

  2. 后端程序员之路 59、go uiprogress

    gosuri/uiprogress: A go library to render progress bars in terminal applicationshttps://github.com/g ...

  3. 后端程序员之路 52、A Tour of Go-2

    # flowcontrol    - for        - for i := 0; i < 10; i++ {        - for ; sum < 1000; {        ...

  4. 后端程序员之路 43、Redis list

    Redis数据类型之LIST类型 - Web程序猿 - 博客频道 - CSDN.NEThttp://blog.csdn.net/thinkercode/article/details/46565051 ...

  5. 后端程序员之路 22、RESTful API

    理解RESTful架构 - 阮一峰的网络日志http://www.ruanyifeng.com/blog/2011/09/restful.html RESTful API 设计指南 - 阮一峰的网络日 ...

  6. 后端程序员之路 16、信息熵 、决策树、ID3

    信息论的熵 - guisu,程序人生. 逆水行舟,不进则退. - 博客频道 - CSDN.NEThttp://blog.csdn.net/hguisu/article/details/27305435 ...

  7. 后端程序员之路 7、Zookeeper

    Zookeeper是hadoop的一个子项目,提供分布式应用程序协调服务. Apache ZooKeeper - Homehttps://zookeeper.apache.org/ zookeeper ...

  8. 后端程序员之路 4、一种monitor的做法

    record_t包含_sum._count._time_stamp._max._min最基础的一条记录,可以用来记录最大值.最小值.计数.总和metric_t含有RECORD_NUM(6)份recor ...

  9. 后端程序员之路 58、go wlog

    daviddengcn/go-colortext: Change the color of console text.https://github.com/daviddengcn/go-colorte ...

随机推荐

  1. 【洛谷 p3376】模板-网络最大流(图论)

    题目:给出一个网络图,以及其源点和汇点,求出其网络最大流. 解法:网络流Dinic算法. 1 #include<cstdio> 2 #include<cstdlib> 3 #i ...

  2. Python 遭遇 ProxyError 问题记录

    最近遇到的一个问题,在搞清楚之后才发现这么多年的 HTTPS_PROXY 都配置错了! 起因 想用 Python 在网上下载一些图片素材,结果 requests 报错 requests.excepti ...

  3. 洛谷P1119-灾后重建-floyd算法

    洛谷P1119-灾后重建 题目描述 给出\(B\)地区的村庄数NN,村庄编号从\(0\)到\(N-1\),和所有\(M\)条公路的长度,公路是双向的. 给出第\(i\)个村庄重建完成的时间\(t_i\ ...

  4. kubernetes实战-配置中心(四)分环境使用apollo配置中心

    要进行分环境,需要将现有实验环境进行拆分 portal服务,可以各个环境共用,但是apollo-adminservice和apollo-configservice必须要分开. 1.zk环境拆分为tes ...

  5. Python优化机制:常量折叠

    英文:https://arpitbhayani.me/blogs/constant-folding-python 作者:arprit 译者:豌豆花下猫("Python猫"公众号作者 ...

  6. 爬虫入门六 总结 资料 与Scrapy实例-bibibili番剧信息

    title: 爬虫入门六 总结 资料 与Scrapy实例-bibibili番剧信息 date: 2020-03-16 20:00:00 categories: python tags: crawler ...

  7. 831A- Unimodal Array

    A. Unimodal Array time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  8. C++ STL (基础)

    STL是什么(STL简介) 本节主要讲述 STL 历史.STL 组件.STL 基本结构以及 STL 编程概述.STL 历史可以追溯到 1972 年 C 语言在 UNIX 计算机上的首次使用.直到 19 ...

  9. Vue3(四)从jQuery 转到 Vue工程化 的捷径

    不会 webpack 还想学 vue 工程化开发 的福音 熟悉jQuery开发的,学习vue的简单使用是没用啥问题的,但是学习vue的工程化开发方式,往往会遇到各种问题,比如: webpack.nod ...

  10. 014.NET5_MVC_Razor扩展Html控件02

    第二种方法: 通过一个后台方法,返回一个不存在的html标签字符串,在读取的时候,通过后台方法去渲染成需要的标签和内容: 1. 定义一个普通类,类名称建议以TagHelper结尾,并且给类添加特性[H ...