COGS743. [网络流24题] 最长k可重区间集
743. [网络流24题] 最长k可重区间集
★★★ 输入文件:interv.in 输出文件:interv.out 简单对比
时间限制:1 s 内存限制:128 MB
- «问题描述:

- «编程任务:
- 对于给定的开区间集合I和正整数k,计算开区间集合I的最长k可重区间集的长度。
- «数据输入:
- 由文件interv.in提供输入数据。文件的第1 行有2 个正整数n和k,分别表示开区间的
- 个数和开区间的可重迭数。接下来的n行,每行有2个整数,表示开区间的左右端点坐标。
- «结果输出:
- 程序运行结束时,将计算出的最长k可重区间集的长度输出到文件interv.out中。
- 输入文件示例 输出文件示例
- interv.in
- 4 2
- 1 7
- 6 8
- 7 10
9 13
interv.out
- 15
这样的区间建图比较好想,因为以前做过用最短路的最小区间覆盖问题,想法类似
BYVOID:
离散化所有区间的端点,把每个端点看做一个顶点,建立附加源S汇T。
1、从S到顶点1(最左边顶点)连接一条容量为K,费用为0的有向边。
2、从顶点2N(最右边顶点)到T连接一条容量为K,费用为0的有向边。
3、从顶点i到顶点i+1(i+1<=2N),连接一条容量为无穷大,费用为0的有向边。
4、对于每个区间[a,b],从a对应的顶点i到b对应的顶点j连接一条容量为1,费用为区间长度的有向边。
两点:
1.相邻的连一条边,避免了每个点都和s t连边
2.容量限制为k,经过每个点的边数一定<=k
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=,M=1e5+,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,k,mp[N],m,l[N],r[N],s,t;
int Bin(int v){
int l=,r=m;
while(l<=r){
int mid=(l+r)>>;
if(mp[mid]==v) return mid;
if(v<mp[mid]) r=mid-;
else l=mid+;
}
return -;
}
struct edge{
int v,ne,c,f,w;
}e[M<<];
int cnt,h[N];
inline void ins(int u,int v,int c,int w){
//printf("ins %d %d %d %d %d %d\n",u,v,c,w,mp[u],mp[v]);
cnt++;
e[cnt].v=v;e[cnt].c=c;e[cnt].f=;e[cnt].w=w;
e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt].v=u;e[cnt].c=;e[cnt].f=;e[cnt].w=-w;
e[cnt].ne=h[v];h[v]=cnt;
}
void build(){
s=;t=m+;
ins(s,,k,);ins(m,t,k,);
for(int i=;i<m;i++)
ins(i,i+,INF,);
for(int i=;i<=n;i++)
ins(Bin(l[i]),Bin(r[i]),,-(r[i]-l[i]));
}
int q[N],head,tail,d[N],inq[N],pre[N],pos[N];
inline void lop(int &x){if(x==N) x=;else if(x==) x=N-;}
bool spfa(){
memset(d,,sizeof(d));
memset(inq,,sizeof(inq));
head=tail=;
q[tail++]=s;inq[s]=;d[s]=;
pre[t]=-;
while(head!=tail){
int u=q[head++];inq[u]=;lop(head);
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w;
if(e[i].c>e[i].f&&d[v]>d[u]+w){
d[v]=d[u]+w;
pos[v]=i;pre[v]=u;
if(!inq[v]){
inq[v]=;
if(d[v]<d[q[head]]) head--,lop(head),q[head]=v;
else q[tail++]=v,lop(tail);
}
}
}
}
return pre[t]!=-;
}
int mcmf(){
int flow=,cost=;
while(spfa()){
int f=INF;
for(int i=t;i!=s;i=pre[i]) f=min(f,e[pos[i]].c-e[pos[i]].f);
flow+=f;cost+=-d[t]*f;//printf("flow %d\n",flow);
for(int i=t;i!=s;i=pre[i]){
int p=pos[i];
e[p].f+=f;
e[((p-)^)+].f-=f;
}
}
return cost;
}
int main(){
freopen("interv.in","r",stdin);
freopen("interv.out","w",stdout);
n=read();k=read();
for(int i=;i<=n;i++) mp[++m]=l[i]=read(),mp[++m]=r[i]=read();
sort(mp+,mp++m);
int p=;mp[++p]=mp[];
for(int i=;i<=m;i++) if(mp[i]!=mp[i-]) mp[++p]=mp[i];
m=p;
build();
printf("%d\n",mcmf());
}
COGS743. [网络流24题] 最长k可重区间集的更多相关文章
- [网络流24题]最长k可重区间集[题解]
最长 \(k\) 可重区间集 题目大意 给定实心直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取开区间集 ...
- [网络流24题] 最长k可重区间集
https://www.luogu.org/problemnew/show/3358 以区间(1,5),(2,6),(7,8)为例 建模方法一: 建模方法二: 离散化区间端点 相当于找k条费用最大的不 ...
- [网络流24题] 最长K可重区间集问题
题目链接:戳我 当时刷24题的时候偷了懒,没有写完,结果落下这道题没有写qwq结果今天考试T3中就有一部分要用到这个思想,蒟蒻我硬是没有想到网络流呜呜呜 最大费用流. 就是我们考虑将问题转化一下,转化 ...
- [网络流24题] 最长k可重区间集问题 (费用流)
洛谷传送门 LOJ传送门 很巧妙的建图啊...刚了$1h$也没想出来,最后看的题解 发现这道题并不类似于我们平时做的网络流题,它是在序列上的,且很难建出来二分图的形. 那就让它在序列上待着吧= = 对 ...
- [网络流24题]最长k可重线段集[题解]
最长 \(k\) 可重线段集 题目大意 给定平面 \(x-O-y\) 上 \(n\) 个开线段组成的集合 \(I\) ,和一个正整数 \(k\) .试设计一个算法,从开线段集合 \(I\) 中选取开线 ...
- [网络流24题] 最长k可重线段集问题 (费用流)
洛谷传送门 LOJ传送门 最长k可重区间集问题的加强版 大体思路都一样的,不再赘述,但有一些细节需要注意 首先,坐标有负数,而且需要开$longlong$算距离 但下面才是重点: 我们把问题放到了二维 ...
- 网络流24题-最长k可重线段集问题
最长k可重线段集问题 时空限制1000ms / 128MB 题目描述 给定平面 x−O−y 上 n 个开线段组成的集合 I,和一个正整数 k .试设计一个算法,从开线段集合 I 中选取出开线段集合 S ...
- 【网络流24题】最长k可重区间集(费用流)
[网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...
- LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 ...
随机推荐
- 解决WebApi入参时多对象的问题
我们的项目是用WebApi提供数据服务,且WebPage跟APP中都有调用到. WebApi提供的接口一多,就发现一个问题,我们项目中有很多接口是接收POST(安全原因,我们采用的是https)请求的 ...
- 背水一战 Windows 10 (34) - 控件(进度类): RangeBase, Slider, ProgressBar, ProgressRing
[源码下载] 背水一战 Windows 10 (34) - 控件(进度类): RangeBase, Slider, ProgressBar, ProgressRing 作者:webabcd 介绍背水一 ...
- Setting my home here
New here (For no chinese input on this machine, I have to use English.) Why do I choose here ? Whene ...
- SharedPreferences漏洞, 无法避免,所以不要在里面存储敏感信息
1. SharedPreferences漏洞, 无法避免,所以不要在里面存储敏感信息2. 数据存储检测,content://com.starcor.launcherInfo/deviceInfo&q ...
- springmvc的类型转换
一.springmvc的类型转换 (一)默认情况下,springmvc内置的类型转换器只能 将"yyyy/MM/dd"类型的字符串转换为Date类型的日期 情境一: 而现在我们无 ...
- 亿级规模的Elasticsearch优化实战
Elasticsearch 的基本信息大致如图所示,这里就不具体介绍了. 本次分享主要包含两个方面的实战经验:索引性能和查询性能. 一. 索引性能(Index Performance) 首先要考虑的是 ...
- jquery实现导航图轮播
版权声明:作者原创,转载请注明出处! 下面的几个栗子是使用jquery实现Banner轮播的效果,直接将代码贴出来,从最初级没有任何优化和封装的写法,一直到最后一个栗子,一步步进行了优化,加大程序的可 ...
- iOS开发之Runtime机制深入解析
本篇主要讲述在 OC 开发中主要涉及到的运行时机制: 运行时的工作: 运行时在 OC 中的工作:OC 语言的设计模式决定了尽可能的把程序从编译和链接时推迟到运行时.只要有可能,OC 总是使用动态的方式 ...
- Tomcat:利用Apache配置反向代理、负载均衡
本篇主要介绍apache配置反向代理,介绍了两种情况:第一种是,只使用apache配置反向代理:第二种是,apache与应用服务器(tomcat)结合,配置反向代理,同时了配置了负载均衡. 准备工作 ...
- .NET应用架构设计—工作单元模式(摆脱过程式代码的重要思想,代替DDD实现轻量级业务)
阅读目录: 1.背景介绍 2.过程式代码的真正困境 3.工作单元模式的简单示例 4.总结 1.背景介绍 一直都在谈论面向对象开发,但是开发企业应用系统时,使用面向对象开发最大的问题就是在于,多个对象之 ...