题意

给定一个长度为 \(n\) 的序列 \(a\) 和 \(m\) 次询问,第 \(i\) 次询问需要求出 \([l_i,r_i]\) 内所有子序列去重之后的和,对 \(p_i\) 取模。

\(\texttt{Data Range:}1\leq n,m,a_i\leq 10^5,1\leq p_i\leq 10^9\)

题解

人生第一道 Ynoi,写篇题解祭之。

我们与其考虑某个子序列包含了哪些值,还不如看某个值能贡献到多少个子序列。

然而正着做不好做,因为一个子序列中某个值可能出现多次,所以考虑反过来看一个值不能贡献到多少个子序列,再用总的减去这个子序列就好了。

考虑某一个 \([l,r]\) 的询问,其中某个数出现了 \(k\) 次,可以很容易由上面的分析知道这个数将会对 \(2^{r-l+1}-2^{r-l+1-k}\) 个子序列产生贡献。

同时,注意到多个出现次数相同的数可以一起加起来贡献。所以我们可以考虑设 \(b_k\) 为当前的区间内出现了 \(k\) 次的所有数的和,那么我们可以得到答案为

\[\sum\limits_{k}b_k\left(2^{r-l+1}-2^{r-l+1-k}\right)
\]

注意到 \(b_k\) 可以使用莫队来维护,所以我们就得到了一个 \(O(nm\log n)\) 的算法,但是无法通过。

考虑统计答案的时候我们会枚举很多等于 \(0\) 的 \(b_k\)。所以我们在移动区间端点的时候可以同时用链表记录一下满足 \(b_k\neq 0\) 的那些 \(k\)。

注意到链表中记录的 \(k\) 是 \(O(\sqrt{n})\) 的,所以时间复杂度就变为 \(O(m\sqrt{n}\log n)\),还是会 TLE。

注意到这个 \(\log\) 甚至都可以搞掉,考虑分块打表,对于每个询问都预处理一次,因为一次预处理是 \(O(\sqrt{n})\) 的,所以复杂度为 \(O(m\sqrt{n})\),可过。

代码

#include<bits/stdc++.h>
#pragma GCC optimize("Ofast,unroll-loops")
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=2e5+51;
struct Query{
ll l,r,p,id;
inline bool operator <(const Query &rhs)const;
};
Query qry[MAXN];
ll n,qcnt,l,r,p,blockSize,ptrl,ptrr,len,hd;
li rres;
ll x[MAXN],res[MAXN],cntl[MAXN],sum[MAXN],prv[MAXN],nxt[MAXN];
ll blk[MAXN],pw[MAXN];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
inline bool Query::operator <(const Query &rhs)const
{
if(l/blockSize==rhs.l/blockSize)
{
return l/blockSize==1?r<rhs.r:r>rhs.r;
}
return l<rhs.l;
}
inline void insert(ll x)
{
prv[x]=0,nxt[x]=hd,prv[hd]=x,hd=x;
}
inline void erase(ll x)
{
if(x==hd)
{
return (void)(hd=nxt[x],prv[nxt[x]]=prv[x]=nxt[x]=0);
}
nxt[prv[x]]=nxt[x],prv[nxt[x]]=prv[x],prv[x]=nxt[x]=0;
}
inline void add(ll pos)
{
if(!(cntl[x[pos]]++))
{
sum[1]+=x[pos];
}
else
{
sum[cntl[x[pos]]-1]-=x[pos],sum[cntl[x[pos]]]+=x[pos];
}
if(sum[cntl[x[pos]]]==x[pos])
{
insert(cntl[x[pos]]);
}
if(!sum[cntl[x[pos]]-1])
{
erase(cntl[x[pos]]-1);
}
}
inline void del(ll pos)
{
if(!(--cntl[x[pos]]))
{
sum[1]-=x[pos];
}
else
{
sum[cntl[x[pos]]+1]-=x[pos],sum[cntl[x[pos]]]+=x[pos];
}
if(sum[cntl[x[pos]]]==x[pos])
{
insert(cntl[x[pos]]);
}
if(!sum[cntl[x[pos]]+1])
{
erase(cntl[x[pos]]+1);
}
}
inline void setup(ll md)
{
pw[0]=blk[0]=1;
for(register int i=1;i<=511;i++)
{
pw[i]=(pw[i-1]+pw[i-1])%md;
}
blk[1]=(pw[511]+pw[511])%md;
for(register int i=1;i<=512;i++)
{
blk[i]=(li)blk[i-1]*blk[1]%md;
}
}
inline ll query(ll x,ll md)
{
return (li)blk[x>>9]*pw[x&511]%md;
}
int main()
{
blockSize=sqrt(n=read()),qcnt=read();
for(register int i=1;i<=n;i++)
{
x[i]=read();
}
for(register int i=1;i<=qcnt;i++)
{
l=read(),r=read(),p=read(),qry[i]=(Query){l,r,p,i};
}
sort(qry+1,qry+qcnt+1),ptrl=1;
for(register int i=1;i<=qcnt;i++)
{
while(ptrr<qry[i].r)
{
add(++ptrr);
}
while(ptrr>qry[i].r)
{
del(ptrr--);
}
while(ptrl<qry[i].l)
{
del(ptrl++);
}
while(ptrl>qry[i].l)
{
add(--ptrl);
}
setup(p=qry[i].p),len=qry[i].r-qry[i].l+1,rres=0;
for(register int j=hd;j;j=nxt[j])
{
rres+=(li)sum[j]*(query(len,p)-query(len-j,p));
}
res[qry[i].id]=(rres%p+p)%p;
}
for(register int i=1;i<=qcnt;i++)
{
printf("%d\n",res[i]);
}
}

Luogu P5072 [Ynoi2015]盼君勿忘的更多相关文章

  1. 【题解】Luogu P5072 [Ynoi2015]盼君勿忘

    众所周知lxl是个毒瘤,Ynoi道道都是神仙题,题面好评 原题传送门 一看这题没有修改操作就知道这是莫队题 我博客里对莫队的简单介绍 既然是莫队,我们就要考虑每多一个数或少一个数对答案的贡献是什么 假 ...

  2. 洛谷:P5072 [Ynoi2015]盼君勿忘

    原题地址:https://www.luogu.org/problem/P5072 题目简述 给定一个序列,每次查询一个区间[l,r]中所有子序列分别去重后的和mod p 思路 我们考虑每个数的贡献.即 ...

  3. 洛谷P5072 [Ynoi2015]盼君勿忘 [莫队]

    传送门 辣鸡卡常题目浪费我一下午-- 思路 显然是一道莫队. 假设区间长度为\(len\),\(x\)的出现次数为\(k\),那么\(x\)的贡献就是\(x(2^{len-k}(2^k-1))\),即 ...

  4. P5072 [Ynoi2015]盼君勿忘

    传送门 一开始理解错题意了--还以为是两个子序列相同的话只算一次--结果是子序列里相同的元素只算一次-- 对于一个区间\([l,r]\),设其中\(x\)出现了\(k\)次,那么它的贡献就是它的权值乘 ...

  5. [Ynoi2015]盼君勿忘

    题目大意: 给定一个序列,每次查询一个区间\([l,r]\)中所有子序列分别去重后的和\(\bmod p\)(每次询问模数不同). 解题思路: 在太阳西斜的这个世界里,置身天上之森.等这场战争结束之后 ...

  6. 【洛谷5072】[Ynoi2015] 盼君勿忘(莫队)

    点此看题面 大致题意: 一个序列,每次询问一个区间\([l,r]\)并给出一个模数\(p\),求模\(p\)意义下区间\([l,r]\)内所有子序列去重后值的和. 题意转化 原来的题意看起来似乎很棘手 ...

  7. Luogu5072 [Ynoi2015]盼君勿忘 【莫队】

    题目描述:对于一个长度为\(n\)的序列,\(m\)次询问\(l,r,p\),计算\([l,r]\)的所有子序列的不同数之和\(\mathrm{mod} \ p\). 数据范围:\(n,m,a_i\l ...

  8. EC笔记:第二部分:12、复制对象时勿忘其每一个成分

    EC笔记:第二部分:12.复制对象时勿忘其每一个成分 1.场景 某些时候,我们不想使用编译器提供的默认拷贝函数(包括拷贝构造函数和赋值运算符),考虑以下类定义: 代码1: class Point{ p ...

  9. EC读书笔记系列之7:条款12 复制对象时勿忘其每一个成分

    记住: ★copying函数应确保复制“对象内的所有成员变量”及“所有base class成分” ★不要尝试以某个copying函数实现另一个copying函数.应该将共同机能放进第三个函数中,并由两 ...

随机推荐

  1. shiro安全框架和spring整合

    上干货......... 整合spring的配置文件 <?xml version="1.0" encoding="UTF-8"?><beans ...

  2. 记录jmeter使用beanshell断言获取复杂的json字符串参数值

    实战示例 测试场景 电商系统经常会涉及到商品的库存数量的压测,在用户下单前需要先做库存余量的判断,当余量不足时用户无法下单,保证商品的有效售卖 库存余量查询响应结果 响应结果一般是json字符串的形式 ...

  3. 1、了解JVM

    1.JVM.JRE.JDK JVM:是可以将要运行的程序编译成机器语言并去执行的一个平台,具有跨语言.跨平台的特性,运行时需要依赖JRE中的类库 JRE:包含了JVM以及代码运行时的类库,时Java程 ...

  4. 小白也能看懂的Redis教学基础篇——朋友面试被Skiplist跳跃表拦住了

    各位看官大大们,双节快乐 !!! 这是本系列博客的第二篇,主要讲的是Redis基础数据结构中ZSet(有序集合)底层实现之一的Skiplist跳跃表. 不知道那些是Redis基础数据结构的看官们,可以 ...

  5. mysql-10-union

    #进阶10:联合查询 /* union联合 将多条查询语句的结果合并成一个结果 语法: 查询1 union 查询2 union 查询3 ... 应用场景:要查询的结果来自于多个表,且多个表没有直接的连 ...

  6. 008 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 02 Java 中的关键字

    008 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 02 Java 中的关键字 关键字 关键字就是一些有特殊意义的词 之前学习的程序中涉及到的关键字 Java中 ...

  7. K8S环境的Jenkin性能问题处理续篇(任务Pod设置)

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos K8S环境的Jenkin性能问题处理 本文是<K ...

  8. C/C++常用头文件

    原文来源:https://blog.csdn.net/thisispan/article/details/7470335 无聊的时候可以多看看: C/C++头文件一览C#include <ass ...

  9. Rolf Dobelli 《清醒思考的艺术》

    为了避免输光自己靠勤奋积累的财产,罗尔夫·多贝里列了一份系统性思维错误的清单.这一份清单可以和查理·芒格的<人类误判心理学>对照查看. 自本杰明·富兰克林以来,电闪雷鸣没有减少变弱或响声变 ...

  10. SQL Server查询优化指南

    1.尽量不要使用is null,否则将导致引擎放弃使用索引而进行全表扫描.2.char是固定长度,速度快,但占空间,varchar不固定长度,不占空间,但速度慢.3.能使用数字类型就不要使用字符,查询 ...