Luogu P6280 [USACO20OPEN]Exercise G
题意
定义一个长度为 \(n\) 的置换的步数为将 \(P=(1,2,\cdots,n)\) 在该置换操作下变回原样的最小次数。
求所有 \(K\) 的和,使得存在一个长度为 \(n\) 的置换使得其步数为 \(K\),对 \(m\) 取模。
\(\texttt{Data Range:}1\leq n\leq 10^4,10^8\leq m\leq 10^9+7\)
题解
DP 练习题。
注意到一个置换的步数就是它的循环表示中所有循环长度的 \(\operatorname{lcm}\)。于是可以考虑对最大的质数因子来 DP。
设 \(f_{i,j}\) 表示当前所有循环中长度不为 \(1\) 的总长度之和为 \(i\),每个循环长度中最大的质因子不超过 \(p_j\) 的答案。
考虑枚举一下 \(p_j\) 的次幂作为新的循环的长度(加到原来的循环由于之后算答案会去重所以是一样的),于是得到一个转移方程:
\]
然后可以 \(O(n^2)\) 转移。
注意到这个 \(j\) 只由 \(j-1\) 转移而来,所以可以滚动掉 \(j\) 的一维,同时 \(i\) 要倒序枚举。
代码
#include<bits/stdc++.h>
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=1e4+51;
ll n,ptot,MOD,res=1;
ll f[MAXN],prime[MAXN],np[MAXN];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
int main()
{
n=read(),MOD=read(),f[0]=1;
for(register int i=2;i<=n;i++)
{
if(!np[i])
{
prime[++ptot]=i;
}
for(register int j=1;i*prime[j]<=n;j++)
{
np[i*prime[j]]=1;
if(!(i%prime[j]))
{
break;
}
}
}
for(register int i=1;i<=ptot;i++)
{
for(register int j=n;j>=1;j--)
{
for(register int k=prime[i];k<=j;k*=prime[i])
{
f[j]=(f[j]+(li)k*f[j-k]%MOD)%MOD;
}
}
}
for(register int i=1;i<=n;i++)
{
res=(res+f[i])%MOD;
}
printf("%d\n",res);
}
Luogu P6280 [USACO20OPEN]Exercise G的更多相关文章
- LG P4161 [SCOI2009]游戏/LG P6280 [USACO20OPEN]Exercise G
Description(P4161) windy学会了一种游戏. 对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应. 最开始windy把数字按顺序1,2,3,……,N写一排在纸上. 然后再在 ...
- 洛谷 P6276 - [USACO20OPEN]Exercise P(组合数学+DP)
洛谷题面传送门 废了,又不会做/ll orz czx 写的什么神仙题解,根本看不懂(%%%%%%%%% 首先显然一个排列的贡献为其所有置换环的乘积.考虑如何算之. 碰到很多数的 LCM 之积只有两种可 ...
- 2021record
2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...
- POJ 1061 BZOJ 1477 Luogu P1516 青蛙的约会 (扩展欧几里得算法)
手动博客搬家: 本文发表于20180226 23:35:26, 原地址https://blog.csdn.net/suncongbo/article/details/79382991 题目链接: (p ...
- luogu P5366 [SNOI2017]遗失的答案
luogu 首先gcd为\(G\),lcm为\(L\),有可能出现的数(指同时是\(G\)的因数以及是\(L\)的倍数)可以发现只有几百个.如果选出的数要能取到gcd,那么对于每种质因子,都要有一个数 ...
- 『题解』洛谷P4016 负载平衡问题
title: categories: tags: - mathjax: true --- Problem Portal Portal1:Luogu Portal2: LibreOJ Descripti ...
- Storyboards Tutorial 03
这一节主要介绍segues,static table view cells 和 Add Player screen 以及 a game picker screen. Introducing Segue ...
- 文件图标SVG
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink ...
- 线段树||BZOJ5194: [Usaco2018 Feb]Snow Boots||Luogu P4269 [USACO18FEB]Snow Boots G
题面:P4269 [USACO18FEB]Snow Boots G 题解: 把所有砖和靴子排序,然后依次处理每一双靴子,把深度小于等于它的砖块都扔线段树里,问题就转化成了求线段树已有的砖块中最大的砖块 ...
随机推荐
- MyEclipse中的项目导入到Eclipse中运行的错误解决
之前用的myEclipse,后来把项目导入eclipse发现报错,将MyEclipse中的项目导入到Eclipse中运行,不注意一些细节,会造成无法运行的后果.下面就说说具体操作:导入后出现如下错误: ...
- java.lang.UnsupportedOperationException: A TupleBackedMap cannot be modified.解决以及探究
java.lang.UnsupportedOperationException: A TupleBackedMap cannot be modified. at org.springframework ...
- 快速删除XMind指定层级的方法
在使用xmind梳理知识点的时候,因为长期积累,单个文件的节点数可能超过1000个,层级可能超过6层.但在我们做文件分享时,可能只需要提供3层的思维导图,这时候就需要对子节点进行删除.原始的方法,就是 ...
- C# 中的 is 真的是越来越强大,越来越语义化
一:背景 1. 讲故事 最近发现 C#7 之后的 is 是越来越看不懂了,乍一看花里胡哨的,不过当我静下心来仔细研读,发现这 is 是越来越短小精悍,而且还特别语义化,那怎是一个爽字了得,这一篇就和大 ...
- Python-反向迭代和实现反向迭代
案例: 实现一个连续的浮点数发生器,FloatRange,根据给定范围(start, end) 和步进值,产生一些列的浮点数,例如:FloatRange(3,4,0.2),将产生下列序列: 正向:3. ...
- chrome浏览器的两个坑,以及其他
chrome打开本地网页时,不能保存cookiechrome拒绝使用ajax访问本地文件(火狐可以) ipinfo.io/ip 获得公网iphttps://v1.hitokoto.cn/ 获得一句动漫 ...
- mapreduce的一些简单使用
一.键值对RDD的创建 1.从文件中加载 /opt目录下创建wordky.txt文件. wordky.txt文件中输入以下三行字符: Hadoop is good Spark is fast Spar ...
- 083 01 Android 零基础入门 02 Java面向对象 01 Java面向对象基础 02 构造方法介绍 02 构造方法-带参构造方法
083 01 Android 零基础入门 02 Java面向对象 01 Java面向对象基础 02 构造方法介绍 02 构造方法-带参构造方法 本文知识点:构造方法-带参构造方法 说明:因为时间紧张, ...
- 008 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 02 Java 中的关键字
008 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 02 Java 中的关键字 关键字 关键字就是一些有特殊意义的词 之前学习的程序中涉及到的关键字 Java中 ...
- 使用Android进行VR图像处理
Source code at GitHub 介绍 VR或360图像,可以在耳机或在像谷歌街景这样的网站上观看是标准的JPG图像.你可以使用简单的Android图形处理技术,通过单独的移动设备或内部运行 ...