Luogu P6280 [USACO20OPEN]Exercise G
题意
定义一个长度为 \(n\) 的置换的步数为将 \(P=(1,2,\cdots,n)\) 在该置换操作下变回原样的最小次数。
求所有 \(K\) 的和,使得存在一个长度为 \(n\) 的置换使得其步数为 \(K\),对 \(m\) 取模。
\(\texttt{Data Range:}1\leq n\leq 10^4,10^8\leq m\leq 10^9+7\)
题解
DP 练习题。
注意到一个置换的步数就是它的循环表示中所有循环长度的 \(\operatorname{lcm}\)。于是可以考虑对最大的质数因子来 DP。
设 \(f_{i,j}\) 表示当前所有循环中长度不为 \(1\) 的总长度之和为 \(i\),每个循环长度中最大的质因子不超过 \(p_j\) 的答案。
考虑枚举一下 \(p_j\) 的次幂作为新的循环的长度(加到原来的循环由于之后算答案会去重所以是一样的),于是得到一个转移方程:
\]
然后可以 \(O(n^2)\) 转移。
注意到这个 \(j\) 只由 \(j-1\) 转移而来,所以可以滚动掉 \(j\) 的一维,同时 \(i\) 要倒序枚举。
代码
#include<bits/stdc++.h>
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=1e4+51;
ll n,ptot,MOD,res=1;
ll f[MAXN],prime[MAXN],np[MAXN];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
int main()
{
n=read(),MOD=read(),f[0]=1;
for(register int i=2;i<=n;i++)
{
if(!np[i])
{
prime[++ptot]=i;
}
for(register int j=1;i*prime[j]<=n;j++)
{
np[i*prime[j]]=1;
if(!(i%prime[j]))
{
break;
}
}
}
for(register int i=1;i<=ptot;i++)
{
for(register int j=n;j>=1;j--)
{
for(register int k=prime[i];k<=j;k*=prime[i])
{
f[j]=(f[j]+(li)k*f[j-k]%MOD)%MOD;
}
}
}
for(register int i=1;i<=n;i++)
{
res=(res+f[i])%MOD;
}
printf("%d\n",res);
}
Luogu P6280 [USACO20OPEN]Exercise G的更多相关文章
- LG P4161 [SCOI2009]游戏/LG P6280 [USACO20OPEN]Exercise G
Description(P4161) windy学会了一种游戏. 对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应. 最开始windy把数字按顺序1,2,3,……,N写一排在纸上. 然后再在 ...
- 洛谷 P6276 - [USACO20OPEN]Exercise P(组合数学+DP)
洛谷题面传送门 废了,又不会做/ll orz czx 写的什么神仙题解,根本看不懂(%%%%%%%%% 首先显然一个排列的贡献为其所有置换环的乘积.考虑如何算之. 碰到很多数的 LCM 之积只有两种可 ...
- 2021record
2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...
- POJ 1061 BZOJ 1477 Luogu P1516 青蛙的约会 (扩展欧几里得算法)
手动博客搬家: 本文发表于20180226 23:35:26, 原地址https://blog.csdn.net/suncongbo/article/details/79382991 题目链接: (p ...
- luogu P5366 [SNOI2017]遗失的答案
luogu 首先gcd为\(G\),lcm为\(L\),有可能出现的数(指同时是\(G\)的因数以及是\(L\)的倍数)可以发现只有几百个.如果选出的数要能取到gcd,那么对于每种质因子,都要有一个数 ...
- 『题解』洛谷P4016 负载平衡问题
title: categories: tags: - mathjax: true --- Problem Portal Portal1:Luogu Portal2: LibreOJ Descripti ...
- Storyboards Tutorial 03
这一节主要介绍segues,static table view cells 和 Add Player screen 以及 a game picker screen. Introducing Segue ...
- 文件图标SVG
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink ...
- 线段树||BZOJ5194: [Usaco2018 Feb]Snow Boots||Luogu P4269 [USACO18FEB]Snow Boots G
题面:P4269 [USACO18FEB]Snow Boots G 题解: 把所有砖和靴子排序,然后依次处理每一双靴子,把深度小于等于它的砖块都扔线段树里,问题就转化成了求线段树已有的砖块中最大的砖块 ...
随机推荐
- JAVA基础之代码简洁之道
引言 普通的工程师堆砌代码,优秀的工程师优雅代码,卓越的工程师简化代码.如何写出优雅整洁易懂的代码是一门学问,也是软件工程实践里重要的一环.--来自网络 背景 软件质量,不但依赖于架构及项目管理,更与 ...
- Spring 配置文件配置事务
一.引入事务的头文件 xmlns:tx="http://www.springframework.org/schema/tx" http://www.springframework. ...
- 软件定义网络实验记录⑤--OpenFlow 协议分析和 OpenDaylight 安装
一.实验目的 回顾 JDK 安装配置,了解 OpenDaylight 控制的安装,以及 Mininet 如何连接: 通过抓包获取 OpenFlow 协议,验证 OpenFlow 协议和版本,了解协议内 ...
- 大话Python类语义
类 物以类聚,人以群分,就是相同特征的人和事物会自动聚集在一起,核心驱动点就是具有相同特征或相类似的特征,我们把具有相同特征或相似特征的事物放在一起,被称为分类,把分类依据的特征称为类属性 计算机中分 ...
- Python3基础——函数
ython 函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如print().但你也可 ...
- 洛谷 P3413 【萌数】
敲完这篇题解,我就,我就,我就,嗯,好,就这样吧... 思路分析: 首先我们要知道一个回文串的性质--假如说一个[l-1,r+1]的串是回文的,那么[l,r]一定也是回文的. 所以我们只要记录前一个数 ...
- IPA的动态库注入+企业重签名过程
[摘录]之前在进行iOS测试过程中由于要获取一定数据信息,因此需要对原本的安装包进行代码注入并且重新打包安装,因此就需要使用重签名策略,在此进行分享,希望大家可以使用其中的方法来运用到自身的项目中. ...
- 怎么快速从产品助理/初级 PM 成长为高级 PM?
一般想成为一枚产品经理的同学,如果没有经过系统的学习,都是从产品专员/助理开始做起的~ 那要想快速从产品助理/初级 PM 成长为高级 PM,以下这几点必不可少 直接上干货~ 全文篇幅较长,可以点赞收藏 ...
- git 查看本地分支和切换本地分支的命令
查看本地分支,和当前所在的分支 git branch -vv git checkout developer 切换到developer分支
- .NET Standard 类库的使用技巧
系列目录 [已更新最新开发文章,点击查看详细] 在前一篇博客<.NET Standard中配置TargetFrameworks输出多版本类库>中详细介绍了如何创建.配置.条件编译. ...