import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import time
import sys
sys.path.append("..") #导入d2lzh_pytorch
import d2lzh_pytorch as d2l #导入所需要的包和模块 mnist_train =torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',train=True, download=True, transform=transforms.ToTensor())
#用torchvision的torchvision.datasets来下载数据集 通过参数train来指定训练数据集或测试数据集
#用transform=transform.ToTensor()将所有数据转换为Tensor (不进行转换 换回的为PIL图片)
mnist_test =torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',train=False, download=True, transform=transforms.ToTensor()) print(type(mnist_train))
print(len(mnist_train), len(mnist_test)) #获取数据集的大小
输出结果:

<class 'torchvision.datasets.mnist.FashionMNIST'>
60000 10000
feature, label = mnist_train[0]  #通过下标来访问任意一个样本
print(feature.shape, label) # Channel x Height X Width 输出结果:torch.Size([1, 28, 28]) 9 #1 28 28 C*H*W 第一维通道数 数据集为灰度图像 所以通道数为1 后面为高和宽 def get_fashion_mnist_labels(labels):
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress','coat','sandal', 'shirt', 'sneaker', 'bag', 'ankleboot']
return [text_labels[int(i)] for i in labels]
#将数值标签转换为相应的文本标签 #定义可以在一行里画出多张图像和对应标签
def show_fashion_mnist(images, labels):
#d2l.use_svg_display() _, figs = plt.subplots(1, len(images), figsize=(12, 12))
for f, img, lbl in zip(figs, images, labels):
f.imshow(img.view((28, 28)).numpy())
f.set_title(lbl)
f.axes.get_xaxis().set_visible(False)
f.axes.get_yaxis().set_visible(False)
plt.show() X, y = [], []
for i in range(5):
X.append(mnist_train[i][0])
y.append(mnist_train[i][1])
show_fashion_mnist(X, get_fashion_mnist_labels(y))

batch_size = 256
if sys.platform.startswith('win'):
num_workers = 0 #0表示不用额外的进程来加速读取数据
else:
num_workers = 4 #设置4个进程读取数据
train_iter = torch.utils.data.DataLoader(mnist_train,batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test,batch_size=batch_size, shuffle=False, num_workers=num_workers)
#PyTorch的DataLoader中⼀个很⽅便的功能是允许使⽤多进程来加速数据读取 start = time.time()
for X, y in train_iter:
continue
print('%.2f sec' % (time.time() - start)) #查看读取⼀遍训练数据需要的时间 输出结果:4.99 sec (不是一个确定值)

pytorch 图像分类数据集(Fashion-MNIST)的更多相关文章

  1. 深度学习常用数据集 API(包括 Fashion MNIST)

    基准数据集 深度学习中经常会使用一些基准数据集进行一些测试.其中 MNIST, Cifar 10, cifar100, Fashion-MNIST 数据集常常被人们拿来当作练手的数据集.为了方便,诸如 ...

  2. PyTorch 图像分类

    PyTorch 图像分类 如何定义神经网络,计算损失值和网络里权重的更新. 应该怎么处理数据? 通常来说,处理图像,文本,语音或者视频数据时,可以使用标准 python 包将数据加载成 numpy 数 ...

  3. mnist识别优化——使用新的fashion mnist进行模型训练

    今天通过论坛偶然知道,在mnist之后,还出现了一个旨在代替经典mnist数据集的Fashion MNIST,同mnist一样,它也是被用作深度学习程序的“hello world”,而且也是由70k张 ...

  4. Pytorch划分数据集的方法

    之前用过sklearn提供的划分数据集的函数,觉得超级方便.但是在使用TensorFlow和Pytorch的时候一直找不到类似的功能,之前搜索的关键字都是"pytorch split dat ...

  5. fashion MNIST识别(Tensorflow + Keras + NN)

    Fashion MNIST https://www.kaggle.com/zalando-research/fashionmnist Fashion-MNIST is a dataset of Zal ...

  6. mnist数据集下载——mnist数据集提供百度网盘下载地址

    mnist数据集是由深度学习大神 LeCun等人制作完成的数据集,mnist数据集也常认为是深度学习的“ Hello World!”. 官网:http://yann.lecun.com/exdb/mn ...

  7. [转载]pytorch自定义数据集

    为什么要定义Datasets: PyTorch提供了一个工具函数torch.utils.data.DataLoader.通过这个类,我们在准备mini-batch的时候可以多线程并行处理,这样可以加快 ...

  8. 使用TensorRT对caffe和pytorch onnx版本的mnist模型进行fp32和fp16 推理 | tensorrt fp32 fp16 tutorial with caffe pytorch minist model

    本文首发于个人博客https://kezunlin.me/post/bcdfb73c/,欢迎阅读最新内容! tensorrt fp32 fp16 tutorial with caffe pytorch ...

  9. TensorFlow使用记录 (十四): Multi-task to MNIST + Fashion MNIST

    前言 后面工作中有个较重要的 task 是将 YOLOV3 目标检测和 LanNet 车道线检测和到一个网络中训练,特别的是,这两部分数据来自于不同的数据源.这和我之前在 caffe 环境下训练检测整 ...

随机推荐

  1. Spring一些笔记

    @ControllerAdvice ,被注解的class表示这是一个增强的 Controller. 使用这个 Controller ,可以实现三个方面的功能: 全局异常处理 全局数据绑定 全局数据预处 ...

  2. vue下history模式刷新后404错误解决

    官方说明文档: https://router.vuejs.org/zh/g... 一. 实测 Linux 系统 Apache 配置: 更改站点配置文件即可,我这里在 Directory 标签后面添加了 ...

  3. 【小白学PyTorch】15 TF2实现一个简单的服装分类任务

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

  4. 票房和口碑称霸国庆档,用 Python 爬取猫眼评论区看看电影《我和我的家乡》到底有多牛

    今年的国庆档电影市场的表现还是比较强势的,两名主力<我和我的家乡>和<姜子牙>起到了很好的带头作用. <姜子牙>首日破 2 亿,一举刷新由<哪吒之魔童降世&g ...

  5. uBuntu安装其他版本Python

    问题描述:阿里云服务器uBuntu版本为16.04,默认Python版本为2.7.12和3.5.2,但是FastAPI,仅支持3.6+版本,因此需要更高版本的Python. 注意:系统自带的Pytho ...

  6. Arduino 串口库函数

    库函数目录 if (Serial) available() availableForWrite() begin() end() find() findUntil() flush() parseFloa ...

  7. Jmeter5.3源码编译

    下载源码 https://jmeter.apache.org/download_jmeter.cgi 配置网络环境(重要) 下载 Proxifier 配置上网条件 导入Idea 通过 Idea 的 O ...

  8. Java之ConcurrentHashMap源码解析

    ConcurrentHashMap源码解析 目录 ConcurrentHashMap源码解析 jdk8之前的实现原理 jdk8的实现原理 变量解释 初始化 初始化table put操作 hash算法 ...

  9. 一个漂亮的JavaScript“警告”替代品

    下载 一个漂亮的JavaScript"警告"替代品 安装 $ npm安装-节省sweetalert 使用 从"sweetalert"进口swal; 横波测井(& ...

  10. 扩展、接管MVC都不会,还会用Spring Boot?

    持续原创输出,点击上方蓝字关注我 目录 前言 Spring Boot 版本 如何扩展MVC? 如何自定义一个拦截器? 什么都不配置为什么依然能运行MVC相关的功能? 如何全面接管MVC?[不推荐] 为 ...