LINK:小H的小屋

尽管有论文 但是 其证明非常的不严谨 结尾甚至还是大胆猜测等字样...

先说贪心:容易发现m|n的时候此时均分两个地方就是最优的。

关于这个证明显然m在均分的时候的分点一定是n的子集 考虑不为均分的时候答案一块增多一个增少 但是增多的幅度显然更大 所以的证。

然后 当m不整除n的时候 容易想到还是均分的思路 不过 这次 对于一部分均分到的是 n/m 一部分是n/m+1.

然后暴力枚举中间的分点即可 然后进行计算。

这样复杂度O(100) 异常优秀。

考虑不那么优秀的dp.

容易想到 每放一块北墙对应多块南墙 设状态 f[i][j][k]表示前i块北墙j块南墙此时端点在j的最小值。

这状态转移是n^5的 不过大力跑也能A.值得注意的是 在状态转移的时候需要预处理一下数组g[i][j]表示i个南墙分j个距离的最小值。

因为题目中明确说了 分的位置必须为整数。当然直接计算也是可以依靠分成两段计算也行。可以发现那样也是最优的。

考虑优化 考虑优化j的状态转移 当k递增时 j的转移必然递增。

考虑到 如果j减小了那么造成对于更小的面积用更多的墙 这显然不是最优的。

所以此时总复杂度n^4.

值得注意的是 还可以优化 对于 i,j,k固定的时候 j,k的决策一定不会比 i+1,j,k的决策更大 所以再开个数组存上次的决策来优化转移。

这个证明不太会。

n^4的做法 显然可过嘛.

const int MAXN=310000,G=3;
int m,n;
db ans,k1,k2,s1;
db f[102][102][102];//f[i][j][k]表示 前i个北墙 前j个南墙 现在到达点k的最小面积
db g[102][102];
//int g[101][101][101][2];//g[i][j][k]表示 这个状态的最优决策
int main()
{
freopen("1.in","r",stdin);
gi(k1);//北
gi(k2);//南
gt(m);//北
gt(n);//南
//m<=n;
if(n%m==0)
{
db w2=100.0/(n*1.0);
db w1=100.0/(m*1.0);
ans=w2*k2*n*w2+w1*w1*k1*m;
printf("%.1lf\n",ans);
return 0;
}
rep(0,m,i)rep(0,n,j)rep(0,100,k)f[i][j][k]=INF;
rep(0,n,i)rep(0,100,k)g[i][k]=INF;
g[0][0]=0;
rep(1,n,i)rep(i,100,j)
rep(1,j,k)g[i][j]=min(g[i][j],g[i-1][j-k]+k*k*k2);
f[0][0][0]=0;
rep(1,m,i)//北墙
rep(i,n,j)//南墙
{
rep(j,100,k)
{
//枚举北墙的决策得到南墙的决策.
//cout<<f[i][j][k]<<endl;
int w2=1;//w2逐渐增大
rep(1,k,w1)//w1决策增大的时候 w2决策不会减小
{
while(g[w2+1][w1]+f[i-1][j-w2-1][k-w1]<f[i-1][j-w2][k-w1]+g[w2][w1]&&w2+1<=j)++w2;
//rep(1,j,w2)
f[i][j][k]=min(f[i][j][k],f[i-1][j-w2][k-w1]+g[w2][w1]+(db)w1*k1*w1);
//if(i<=1&&j<=1&&k<=10)cout<<f[i-1][j-w2][k-w1]<<' '<<f[ i][j][k]<<' '<<i<<' '<<j<<' '<<k<<' '<<w2<<' '<<j-w2<<' '<<k-w1<<endl;
}
}
}
printf("%.1lf",f[m][n][100]);
return 0;
}

P4274 [NOI2004]小H的小屋 dp 贪心的更多相关文章

  1. BZOJ1505: [NOI2004]小H的小屋

    BZOJ1505: [NOI2004]小H的小屋 Description 小H发誓要做21世纪最伟大的数学家.他认为,做数学家与做歌星一样,第一步要作好包装,不然本事再大也推不出去. 为此他决定先在自 ...

  2. [NOI2004]小H的小屋 贪心

    神仙贪心,洛谷没有插图导致我题一开始都没看懂.容易发现,块越多越优秀,然后为了满足题意,所以假如不能整除,就分为两个部分(能整除就直接均分就行了).前一部分是n/m,后一部分是n/m+1.数量也是固定 ...

  3. NOI2004 小H的小屋

    还是纯粹不会啊……到底该怎么办 http://blog.sina.com.cn/s/blog_86942b1401016m3g.html http://www.cnblogs.com/datam-cy ...

  4. 【Wannafly挑战赛10 - B】小H和密码(DP)

    试题链接:https://www.nowcoder.com/acm/contest/72/B 题目描述     小H在击败怪兽后,被一个密码锁挡住了去路     密码锁由N个转盘组成,编号为1~N,每 ...

  5. [BZOJ4813][CQOI2017]小Q的棋盘(DP,贪心)

    4813: [Cqoi2017]小Q的棋盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 804  Solved: 441[Submit][Statu ...

  6. 小H和密码

    链接:https://www.nowcoder.com/acm/contest/72/B来源:牛客网 题目描述     小H在击败怪兽后,被一个密码锁挡住了去路     密码锁由N个转盘组成,编号为1 ...

  7. 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心

    题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...

  8. 【BZOJ4813】[CQOI2017]小Q的棋盘(贪心)

    [BZOJ4813][CQOI2017]小Q的棋盘(贪心) 题面 BZOJ 洛谷 题解 果然是老年选手了,这种题都不会做了.... 先想想一个点如果被访问过只有两种情况,第一种是进入了这个点所在的子树 ...

  9. hdu2067 小兔的棋盘 DP/数学/卡特兰数

    棋盘的一角走到另一角并且不越过对角线,卡特兰数,数据量小,可以当做dp求路径数 #include<stdio.h> ][]; int main() { ; ) { int i,j; lon ...

随机推荐

  1. css自动省略号...,通过css实现单行、多行文本溢出显示省略号

    网页开发过程中经常会遇到需要把多行文字溢出显示省略号,这篇文章将总结通过多种方法实现文本末尾省略号显示. 一.单行文本溢出显示省略号(…) 省略号在ie中可以使用text-overflow:ellip ...

  2. 前端开发,页面加载速度性能优化,如何提高web页面加载速度

    一个网页访问速度的快慢,  不仅看它服务器的配置,这里除去你空间主机配置很烂的情况以外,我们从网站开发方面来探讨,前端技术需要从哪些方面提高访问的速度,需要用到哪些技术手段. 文件的加载 图标的加载: ...

  3. 洛谷 P1220 关路灯 区间DP

    题目描述 某一村庄在一条路线上安装了 n 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了 ...

  4. CF 1912 A NEKO's Maze Game

    题目传送门 题目描述 输入 输出 样例 样例输入 样例输出 Yes No No No Yes 一句话题意:2*n的迷宫,从(1,1)出发到(2,n),初始时全部的都是地面,每次询问会把一个地面给变成熔 ...

  5. 数组中出现次数超过一半的数字(剑指offer-28)

    题目描述 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2. ...

  6. SSTI(模板注入)

    SSTI 一. 什么是SSTI 模板引擎(这里特指用于Web开发的模板引擎)是为了使用户界面与业务数据(内容)分离而产生的,它可以生成特定格式的文档,用于网站的模板引擎就会生成一个标准的HTML文档. ...

  7. 数据可视化之分析篇(三)Power BI总计行错误,这个技巧一定要掌握

    https://zhuanlan.zhihu.com/p/102567707 ​前一段介绍过一个客户购买频次统计的案例: Power BI 数据分析应用:客户购买频次分布. 我并没有在文章中显示总计行 ...

  8. Django之 Models组件

    本节内容 路由系统 models模型 admin views视图 template模板 引子 讲django的models之前, 先来想一想, 让你通过django操作数据库,你怎么做? 做苦思冥想, ...

  9. day1:注释和变量

    1.注释的作用:对代码的解释,方便以后阅读代码 2.常用的快捷键:ctrl+q:notepad++的注释ctrl+/:pycharm的注释ctrl+c:复制ctrl+v:粘贴ctrl+z:撤销ctrl ...

  10. canvas : 几个入门需要的基本概念

    这段时间做项目需要用canvas. 而我在看文档的时候,发现canvas是一个很独立的API:和DOM BOM基本上没什么关系. 在学习canvas的时候需要了解很多概念,否则看某些文档的讲解可能会看 ...