MySQL选错索引导致的线上慢查询事故
前言
又和大家见面了!又两周过去了,我的云笔记里又多了几篇写了一半的文章草稿。有的是因为质量没有达到预期还准备再加点内容,有的则完全是一个灵感而已,内容完全木有。羡慕很多大佬们,一周能产出五六篇文章,给我两个肝我都不够。好了,不多说废话了...
最近在线上环境遇到了一次SQL慢查询引发的数据库故障,影响线上业务。经过排查后,确定原因是SQL在执行时,MySQL优化器选择了错误的索引(不应该说是“错误”,而是选择了实际执行耗时更长的索引)。在排查过程中,查阅了许多资料,也学习了下MySQL优化器选择索引的基本准则,在本文中进行解决问题思路的分享。本人MySQL了解深度有限,如果错误欢迎理性讨论和指正。
在这次事故中也能充分看出深入了解MySQL运行原理的重要性,这是遇到问题时能否独立解决问题的关键。 试想一个月黑风高的夜晚,公司线上突然挂了,而你的同事们都不在线,就你一个人有条件解决问题,这时候如果被工程师的基本功把你卡住了,就问你尴不尴尬...
本文的主要内容:
- 故障描述
- 问题原因排查
- MySQL索引选择原理
- 解决方案
- 思考与总结
请大家多多支持我的原创技术公众号:后端技术漫谈
正文
故障描述
在7月24日11点线上某数据库突然收到大量告警,慢查询数超标,并且引发了连接数暴增,导致数据库响应缓慢,影响业务。看图表慢查询在高峰达到了每分钟14w次,在平时正常情况下慢查询数仅在两位数以下,如下图:
赶紧查看慢SQL记录,发现都是同一类语句导致的慢查询(隐私数据例如表名,我已经隐去):
select
*
from
sample_table
where
1 = 1
and (city_id = 565)
and (type = 13)
order by
id desc
limit
0, 1
看起来语句很简单,没什么特别的。但是每个执行的查询时间达到了惊人的44s。
简直耸人听闻,这已经不是“慢”能形容的了...
接下来查看表数据信息,如下图:
可以看到表数据量较大,预估行数在83683240,也就是8000w左右,千万数据量的表。
大致情况就是这样,下面进入排查问题的环节。
问题原因排查
首先当然要怀疑会不会该语句没走索引,查看建表DML中的索引:
KEY `idx_1` (`city_id`,`type`,`rank`),
KEY `idx_log_dt_city_id_rank` (`log_dt`,`city_id`,`rank`),
KEY `idx_city_id_type` (`city_id`,`type`)
请忽略idx_1和idx_city_id_type两个索引的重复,这都是历史遗留问题了。
可以看到是有idx_city_id_type和idx_1索引的,我们的查询条件是city_id和type,这两个索引都是能走到的。
但是,我们的查询条件真的只要考虑city_id和type吗?(机智的小伙伴应该注意到问题所在了,先往下讲,留给大家思考)
既然有索引,接下来就该看该语句实际有没有走到索引了,MySQL提供了Explain可以分析SQL语句。Explain 用来分析 SELECT 查询语句。
Explain比较重要的字段有:
- select_type : 查询类型,有简单查询、联合查询、子查询等
- key : 使用的索引
- rows : 预计需要扫描的行数
更多详细Explain介绍可以参考:MySQL 性能优化神器 Explain 使用分析
我们使用Explain分析该语句:
select * from sample_table where city_id = 565 and type = 13 order by id desc limit 0,1
得到结果:
可以看出,虽然possiblekey有我们的索引,但是最后走了主键索引。而表是千万级别,并且该查询条件最后实际是返回的空数据,也就是MySQL在主键索引上实际检索时间很长,导致了慢查询。
我们可以使用force index(idx_city_id_type)让该语句选择我们设置的联合索引:
select * from sample_table force index(idx_city_id_type) where ( ( (1 = 1) and (city_id = 565) ) and (type = 13) ) order by id desc limit 0, 1
这次明显执行的飞快,分析语句:
实际执行时间0.00175714s,走了联合索引后,不再是慢查询了。
问题找到了,总结下来就是:MySQL优化器认为在limit 1的情况下,走主键索引能够更快的找到那一条数据,并且如果走联合索引需要扫描索引后进行排序,而主键索引天生有序,所以优化器综合考虑,走了主键索引。实际上,MySQL遍历了8000w条数据也没找到那个天选之人(符合条件的数据),所以浪费了很多时间。
MySQL索引选择原理
优化器索引选择的准则
MySQL一条语句的执行流程大致如下图,而查询优化器则是选择索引的地方:
引用参考文献一段解释:
首先要知道,选择索引是MySQL优化器的工作。
而优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句。在数据库里面,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的CPU资源越少。
当然,扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。
总结下来,优化器选择有许多考虑的因素:扫描行数、是否使用临时表、是否排序等等
我们回头看刚才的两个explain截图:
走了主键索引的查询语句,rows预估行数1833,而强制走联合索引行数是45640,并且Extra信息中,显示需要Using filesort进行额外的排序。所以在不加强制索引的情况下,优化器选择了主键索引,因为它觉得主键索引扫描行数少,而且不需要额外的排序操作,主键索引天生有序。
rows是怎么预估出来的
同学们就要问了,为什么rows只有1833,明明实际扫描了整个主键索引啊,行数远远不止几千行。实际上explain的rows是MySQL预估的行数,是根据查询条件、索引和limit综合考虑出来的预估行数。
MySQL是怎样得到索引的基数的呢?这里,我给你简单介绍一下MySQL采样统计的方法。
为什么要采样统计呢?因为把整张表取出来一行行统计,虽然可以得到精确的结果,但是代价太高了,所以只能选择“采样统计”。
采样统计的时候,InnoDB默认会选择N个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。
而数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过1/M的时候,会自动触发重新做一次索引统计。
在MySQL中,有两种存储索引统计的方式,可以通过设置参数innodb_stats_persistent的值来选择:
设置为on的时候,表示统计信息会持久化存储。这时,默认的N是20,M是10。
设置为off的时候,表示统计信息只存储在内存中。这时,默认的N是8,M是16。
由于是采样统计,所以不管N是20还是8,这个基数都是很容易不准的。
我们可以使用analyze table t
命令,可以用来重新统计索引信息。但是这条命令生产环境需要联系DBA,所以我就不做实验了,大家可以自行实验。
索引要考虑 order by 的字段
为什么这么说?因为如果我这个表中的索引是city_id
,type
和id
的联合索引,那优化器就会走这个联合索引,因为索引已经做好了排序。
更改limit大小能解决问题?
把limit数量调大会影响预估行数rows,进而影响优化器索引的选择吗?
答案是会。
我们执行limit 10
select * from sample_table where city_id = 565 and type = 13 order by id desc limit 0,10
图中rows变为了18211,增长了10倍。如果使用limit 100,会发生什么?
优化器选择了联合索引。初步估计是rows还会翻倍,所以优化器放弃了主键索引。宁愿用联合索引后排序,也不愿意用主键索引了。
为何突然出现异常慢查询
问:这个查询语句已经在线上稳定运行了非常长的时间,为何这次突然出现了慢查询?
答:以前的语句查询条件返回结果都不为空,limit1很快就能找到那条数据,返回结果。而这次代码中查询条件实际结果为空,导致了扫描了全部的主键索引。
解决方案
知道了MySQL为何选择这个索引的原因后,我们就可以根据上面的思路来列举出解决办法了。
主要有两个大方向:
- 强制指定索引
- 干涉优化器选择
强制选择索引:force index
就像上面我最开始的操作那样,我们直接使用force index,让语句走我们想要走的索引。
select * from sample_table force index(idx_city_id_type) where ( ( (1 = 1) and (city_id = 565) ) and (type = 13) ) order by id desc limit 0, 1
这样做的优点是见效快,问题马上就能解决。
缺点也很明显:
- 高耦合,这种语句写在代码里,会变得难以维护,如果索引名变化了,或者没有这个索引了,代码就要反复修改。属于硬编码。
- 很多代码用框架封装了SQL,
force index()
并不容易加进去。
我们换一种办法,我们去引导优化器选择联合索引。
干涉优化器选择:增大limit
通过增大limit,我们可以让预估扫描行数快速增加,比如改成下面的limit 0, 1000
SELECT * FROM sample_table where city_id = 565 and type = 13 order by id desc LIMIT 0,1000
这样就会走上联合索引,然后排序,但是这样强行增长limit,其实总有种面向黑盒调参的感觉。我们还有更优美的解决方案吗?
干涉优化器选择:增加包含order by id字段的联合索引
我们这句慢查询使用的是order by id,但是我们却没有在联合索引中加入id字段,导致了优化器认为联合索引后还要排序,干脆就不太想走这个联合索引了。
我们可以新建city_id
,type
和id
的联合索引,来解决这个问题。
这样也有一定的弊端,比如我这个表到了8000w数据,建立索引非常耗时,而且通常索引就有3.4个g,如果无限制的用索引解决问题,可能会带来新的问题。表中的索引不宜过多。
干涉优化器选择:写成子查询
还有什么办法?我们可以用子查询,在子查询里先走city_id和type的联合索引,得到结果集后在limit1选出第一条。
但是子查询使用有风险,一版DBA也不建议使用子查询,会建议大家在代码逻辑中完成复杂的查询。当然我们这句并不复杂啦~
Select * From sample_table Where id in (Select id From `newhome_db`.`af_hot_price_region` where (city_id = 565 and type = 13)) limit 0, 1
还有很多解决办法...
SQL优化是个很大的工程,我们还有非常多的办法能够解决这句慢查询问题,这里就不一一展开了。留给大家做为思考题了。
总结
本文带大家回顾了一次MySQL优化器选错索引导致的线上慢查询事故,可以看出MySQL优化器对于索引的选择并不单单依靠某一个标准,而是一个综合选择的结果。我自己也对这方面了解不深入,还需要多多学习,争取能够好好的做一个索引选择的总结(挖坑)。不说了,拿起巨厚的《高性能MySQL》,开始...
压住我的泡面...
最后做个文章总结:
- 该慢查询语句中使用order by id导致优化器在主键索引和city_id和type的联合索引中有所取舍,最终导致选择了更慢的索引。
- 可以通过强制指定索引,建立包含id的联合索引,增大limit等方式解决问题。
- 平时开发时,尤其是对于特大数据量的表,要注意SQL语句的规范和索引的建立,避免事故的发生。
参考
《高性能MySQL》
MySQL优化器 limit影响的case:
https://www.cnblogs.com/xpchild/p/3878417.html
mysql中走与不走索引的情况汇集(待全量实验):
https://www.cnblogs.com/gxyandwmm/p/13363100.html
MySQL ORDER BY主键id加LIMIT限制走错索引:
https://www.jianshu.com/p/caf5818eca81
【业务学习】关于MySQL order by limit 走错索引的探讨:
https://segmentfault.com/a/1190000020399424
MySQL为什么有时候会选错索引?:
https://www.cnblogs.com/a-phper/p/10313888.html
关注我
我是一名后端开发工程师。主要关注后端开发,数据安全,爬虫,物联网,边缘计算等方向,欢迎交流。
各大平台都可以找到我
原创文章主要内容
- 后端开发
- Java面试
- 设计模式/数据结构/算法题解
- 爬虫/边缘计算/物联网
- 读书笔记/逸闻趣事/程序人生
个人公众号:后端技术漫谈
如果文章对你有帮助,不妨收藏,转发,在看起来~
MySQL选错索引导致的线上慢查询事故的更多相关文章
- 10 mysql选错索引
10 mysql选错索引 在mysql表中可以支持多个索引,有的sql不指定使用哪个索引,由mysql自己来决定,但是有时候mysql选错了索引,导致执行很慢. 例子 CREATE TABLE `t1 ...
- MySQL 选错索引的原因?
MySQL 中,可以为某张表指定多个索引,但在语句具体执行时,选用哪个索引是由 MySQL 中执行器确定的.那么执行器选择索引的原则是什么,以及会不会出现选错索引的情况呢? 先看这样一个例子: 创建表 ...
- 10 | MySQL为什么有时候会选错索引?
前面我们介绍过索引,你已经知道了在MySQL中一张表其实是可以支持多个索引的.但是,你写SQL语句的时候,并没有主动指定使用哪个索引.也就是说,使用哪个索引是由MySQL来确定的. 不知道你有没有碰到 ...
- MySQL 笔记整理(10) --MySQL为什么有时会选错索引?
笔记记录自林晓斌(丁奇)老师的<MySQL实战45讲> (本篇内图片均来自丁奇老师的讲解,如有侵权,请联系我删除) 10) --MySQL为什么有时会选错索引? MySQL中的一张表上可以 ...
- 10 | MySQL为什么有时候会选错索引? 学习记录
<MySQL实战45讲>10 | MySQL为什么有时候会选错索引? 学习记录http://naotu.baidu.com/file/e7c521276650e80fe24584bc9a6 ...
- 一次MySQL线上慢查询分析及索引使用
本文由作者郑智辉授权网易云社区发布. 0.前言 本文通过分析线上MySQL慢查询日志,定位出现问题的SQL,进行业务场景分析,结合索引的相关使用进行数据库优化.在两次处理问题过程中,进行的思考. 1. ...
- mysql5.6创建索引导致锁表阻塞查询
结论:添加索引时,若果有对该表的慢查询,会导致索引添加延时等待 添加索引语句:alter table tb_name add index idx_xx(col_name); 执行添加索引的SQ ...
- mysql 在线加索引 锁表
mysql在线修改表结构大数据表的风险与解决办法归纳 - 王滔 - 博客园 http://www.cnblogs.com/wangtao_20/p/3504395.html MySQL 加索引 加字段 ...
- MySQL ORDER BY主键id加LIMIT限制走错索引
背景及现象 report_product_sales_data表数据量2800万: 经测试,在当前数据量情况下,order by主键id,limit最大到49的时候可以用到索引report_produ ...
随机推荐
- 每日一题 - 剑指 Offer 41. 数据流中的中位数
题目信息 时间: 2019-06-30 题目链接:Leetcode tag: 大根堆 小根堆 难易程度:中等 题目描述: 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有 ...
- web图片前端裁剪功能实现_利用html5 canvas技术实现图片裁剪
用户上传头像然后截图的需求很常见,很多做法是把图像发送到后端,把裁剪后的结果发送给浏览器,这种方式会增加处理时延.最近正好学习了HTML5里的canvas,发现它的图片处理功能比较强大,就打算用can ...
- SpringBoot + Vue + ElementUI 实现后台管理系统模板 -- 后端篇(一): 搭建基本环境、整合 Swagger、MyBatisPlus、JSR303 以及国际化操作
相关 (1) 相关博文地址: SpringBoot + Vue + ElementUI 实现后台管理系统模板 -- 前端篇(一):搭建基本环境:https://www.cnblogs.com/l-y- ...
- 使用virtualBox 创建虚拟机
第一次使用感觉并没有VMware好用,尤其是鼠标在虚拟机和宿主机之间切换的时候很烦,需要按键盘右边ctrl虽然有提示right ctrl但是第一次使用硬是折腾了好半天.感觉不记录一下对不起这个下午. ...
- 关于echarts中的饼状图的label文字显示过长的问题
label: { normal: { fontSize: 14, formatter(v) { let text = v.name let count = text.indexOf('¥') cons ...
- Python axis的含义
axis=0表述列 axis=1表述行 如下面例子: In [52]: arr=np.arange(12).reshape((3,4))In [53]:arrOut[53]:array([[ 0, 1 ...
- 集训作业 洛谷P1433 吃奶酪
嗯?这题竟然是个绿题. 这个题真的不难,不要被他的难度吓到,我们只是不会计算2点之间的距离,他还给出了公式,这个就有点…… 我们直接套公式去求出需要的值,然后普通的搜索就可以了. 这个题我用的深搜,因 ...
- react 实战:写一个年份选择器
上代码. 组件的Js文件. import React, { Component } from "react"; import Style from './myYearSelect. ...
- springboot+junit测试
文章目录 一.junit断言 二.测试模块 三.使用Mockito作为桩模块 四.使用mockMvc测试web层 五.批量测试和测试覆盖率 参考视频:用Spring Boot编写RESTful API ...
- list基本使用
list和vector的用法基本相同,区别如下: list可以头尾插入和删除,效率一样,vector只有尾部插入和删除效率才高,头部操作效率很低 list的排序有专有的接口,不能使用全局的接口,原因是 ...