Part 1:CDQ分治

CDQ分治讲解博客

可以把CDQ分治理解为类似与归并排序求逆序对个数的一种分治算法(至少我现在是这么想的)。先处理完左右两边各自对答案的贡献,在处理跨越左右两边的对答案的贡献。

例题:

逆序对(二维偏序)

过水,不讲。

三维偏序

第一维先sort,第二维由归并保证,第三维在归并时查询权值树状数组。

\(Code:\)

int n, k, tot;
struct node{
int a, b, c, w, id;
}p[N], tp[N];
int ans[N];
ll tre[NN];
inline void add(int cur, int ad) {
for (register int i = cur; i <= k; i += lowbit(i)) {
tre[i] += ad;
}
}
inline ll query(int cur) {
ll res = 0;
for (register int i = cur; i; i -= lowbit(i)) {
res += tre[i];
}
return res;
}
bool cmp(const node &a, const node &b) {
if (a.a == b.a) {
if (a.b == b.b) {
return a.c < b.c;
} else {
return a.b < b.b;
}
}
return a.a < b.a;
}
inline bool comp(const node &a, const node &b) {
return a.a == b.a && a.b == b.b && a.c == b.c;
}
void cdq(int l, int r) {
if (l == r) {
ans[p[l].id] += p[l].w;
return ;
}
int mid = (l + r) >> 1;
cdq(l, mid); cdq(mid + 1, r);
int i = l, j = mid + 1, top = l - 1;
while (i <= mid && j <= r) {
if (p[i].b <= p[j].b) {
tp[++top] = p[i];
add(p[i].c, p[i].w);
++i;
} else {
ans[p[j].id] += query(p[j].c);
tp[++top] = p[j];
++j;
}
}
while (i <= mid) {
tp[++top] = p[i];
add(p[i].c, p[i].w);
++i;
}
while (j <= r) {
ans[p[j].id] += query(p[j].c);
tp[++top] = p[j];
++j;
}
for (register int i = l; i <= mid; ++i) {
add(p[i].c, -p[i].w);
}
for (register int i = l; i <= r; ++i) {
p[i] = tp[i];
}
}
ll bin[N];
int main() {
read(n); read(k);
int aa, bb, cc;
for (register int i = 1; i <= n; ++i) {
read(aa); read(bb); read(cc);
p[i + 1] = (node){aa, bb, cc, 1, i};
}
sort(p + 2, p + 2 + n, cmp);
for (register int i = 1; i <= n; ++i) {//去重
if (!comp(p[i], p[i + 1])) {
p[++tot] = p[i + 1];
} else {
p[tot].w++;
}
}
cdq(1, tot);
...
}

P3120 [USACO15FEB]Cow Hopscotch G

题意

现有递推式:

\[f[i][j] = \sum_{u>i,v>j,id[u][v] \not = id[i][j]}{f[u][v]}
\]

\[f[n][m] = 1
\]

其中 \(n, m<=750,id[i][j] <= n * m\),求 \(f[1][1]\)。

题解

一看是三维偏序,我们就应该能想到CDQ分治

\(id[u][v] \not= id[i][j]\) 可以拆成严格大于和严格小于,然后就是俩三维偏序问题了。把对行数的分治套在外面,列直接暴力。我们从右往左枚举每一列,这样枚举到上面的时候,其右下部分都已经被统计。 实际上,我们还有更好的方法,不用拆 \(\not =\),放弃树状数组,能砍掉一个 \(log\)。具体方法是:我们可以直接维护当前 \(f\) 的总和 \(Tot\),以及其中每一个颜色编号的总和 \(sum[id]\)。由于 \(id\) 比较稀疏,我们无法每次都清空 \(sum\),因此我们记一个 \(T\),表示记录信息的时间,如果发现时间与当前不符的话,就清空重记。

然而,本题还和普通CDQ分治不同,我们原先并不知道每个位置的值,只有我们查询完以后才知道。因此我们可以采用分治FFT的方法,先递归下面,然后算下对上的贡献,最后递归上面。

关键代码:

inline void sol(int U, int D) {
if (U == D) return ;
int mid = (U + D) >> 1;
sol(mid + 1, D);
++nwtime;
int Tot = 0;
for (register int j = m; j; --j) {
for (register int i = U; i <= mid; ++i) {
if (T[h[i][j]] != nwtime) { T[h[i][j]] = nwtime, sum[h[i][j]] = 0; }
f[i][j] = f[i][j] + Tot - sum[h[i][j]];
if (f[i][j] >= P) f[i][j] -= P;
if (f[i][j] < 0) f[i][j] += P;
}
for (register int i = mid + 1; i <= D; ++i) {
if (T[h[i][j]] != nwtime) { T[h[i][j]] = nwtime, sum[h[i][j]] = 0; }
ADD(Tot, f[i][j]);
ADD(sum[h[i][j]], f[i][j]);
}
}
sol(U, mid);
}

习题

动态逆序对

  • 提示:三维为标号顺序,时间,大小关系

[Violet]天使玩偶/SJY摆棋子

  • 提示:最值树状数组;三维为时间,横坐标,纵坐标

Part 2:整体分治

如果说 CDQ 分治是基于时间的分治算法,那么整体分治实际上就是基于值域的整体分治算法

具体讲解lyd书上已经讲得很不错了。这里说一下我的看法:

整体分治的一个经典应用为带(单点)修改的同时查询区间第k大。我们把操作离线下来,就变成了“支持单点修改的区间第k大”。由于要保证时间的关系,因此不能将其它的重新排序来搞事情。

CDQ 分治的做法是二分时间,递归子问题,然后右面累加上左面的贡献。整体分治可以理解为:二分值域,先搞定左面对右面的贡献,然后一块递归子问题去求解。类似权值线段树求第k大,“搞定左对右的贡献”的方法就是 \(k -= tmp\),其中 \(tmp\) 为小于 \(mid\) 的元素个数,这个要用树状数组查询。由于是暂仅考虑左面(小者)对右面(大者)的贡献,因此树状数组维护的是比 \(mid\) 小的位置的权值树状数组。感觉越说越乱

细节还是看代码吧

代码较丑,说一下易错点:

  1. 数组大小要开三倍!!(因为每个查询操作可能会带来俩操作)

  2. 注意真的修改 \(a\) 数组的值!!

例题:

P2617 Dynamic Rankings:动态区间第 \(k\) 大

题意同上。

做法:1.离线 2.对值域二分,将离线下来的一系列操作按照值域分成两组,递归解决

struct operations {
int type, x, y, z, id;
//两种可能。type=1/-1:x(值)y(useless)k(useless)id(位置) (add/delete)
//type = 0: x(left)y(right)k(k)id(位置) (query)
}opts[N], ql[N], qr[N];
void sol(int L, int R, int st, int ed) {
if (st > ed) return ;
if (L == R) {
for (register int i = st; i <= ed; ++i)
if (opts[i].type == 0)
ans[opts[i].id] = L;
return ;
}
int ltop = 0, rtop = 0, mid = (L + R) >> 1;
for (register int i = st; i <= ed; ++i) {
if (opts[i].type == 0) {
int tmp = q(opts[i].y) - q(opts[i].x - 1);
if (opts[i].k <= tmp) ql[++ltop] = opts[i];
else opts[i].k -= tmp, qr[++rtop] = opts[i];
} else {
if (opts[i].x <= mid) ad(opts[i].id, opts[i].type), ql[++ltop] = opts[i];
else qr[++rtop] = opts[i];
}
}
for (register int i = st; i <= ed; ++i)
if (opts[i].type != 0)
tre_clear(opts[i].id);
for (register int i = 1; i <= ltop; ++i)
opts[st - 1 + i] = ql[i];
for (register int i = 1; i <= rtop; ++i)
opts[st - 1 + ltop + i] = qr[i];
sol(L, mid, st, st + ltop - 1);
sol(mid + 1, R, st + ltop, ed);
}
...
//main()
for (register int i = 1; i <= n; ++i) {
read(a[i]);
opts[++otot] = (operations){1, a[i], 0, 0, i};
}
char opt[10];
for (register int i = 1; i <= m; ++i) {
scanf("%s", opt);
if (opt[0] == 'Q') {
read(aa); read(bb); read(cc);
opts[++otot] = (operations){0, aa, bb, cc, ++atot};
} else {
read(aa); read(bb);
opts[++otot] = (operations){-1, a[aa], 0, 0, aa};
a[aa] = bb;
opts[++otot] = (operations){1, a[aa], 0, 0, aa};
}
}
sol(1, ltot, 1, otot);

P3527 [POI2011]MET-Meteors:整体分治算法的优化

题意:维护长为 \(n\) 的带颜色序列,支持 \(m\) 次区间加(非负数)。最后查询每种颜色最早在什么时候权值总和达到了 \(p_i\)。

\(1 <= n, m <= 3e5\)

整体二分的扩展应用。

考虑到整体分治算法实际上是对二分算法的一个优化,相当于把一堆二分任务一块完成,因此我们最好先想出二分暴力 \(O(nmlogn)\) 的算法,再想法优化到 \(O(nlog^2n)\)。

二分的算法不难想出,因而整体分治的算法也不难想出。一种简便的处理 "NIE" 的方法为将总时间设置为 \(m + 1\),且第 \(m + 1\) 次设置为全部加正无穷,这样答案为 \(m + 1\) 实际上就是 "NIE"。

随便敲了个整体分治,然而TLE了 (尽管后来卡常卡过去了) 。毕竟整体二分是 \(O(nlog^2n)\) 的,对于 \(3e5\) 的数据不是很好卡。

这里介绍一种优化方法

考虑到每种“时间”唯一对应一步操作,如果我们把它们也当作真的“操作”,每次都加入删除的话,比较费时间。不妨我们动态地加删,用什么就留什么。

具体来说,就是维护指针 \(nwt\) 表示现在 \(nwt\) 及其之前的时间的操作都累加上了, \(nwt\) 以后的操作还没有累加。我们通过不停的调整 \(nwt\),使得树状数组里面存的是我们想要的那个时间区间(1~mid)。这样就可以省去清空树状数组的时间。(实际上就是动态清空)

值得注意的是,如果用这种优化方法的话,我们就不用再每次对真“操作”的 \(k\) 都减去 \(sum\) 了,因为我们的 \(sum\) 是真的所有小于 \(mid\) 的和,而不是区间内部小于 \(mid\) 的和。

\(Code:\)

int nwt;
void sol(int L, int R, int st, int ed) {
if (st > ed) return ;
if (L == R) {
for (register int i = st; i <= ed; ++i)
ans[opts[i].id] = L;
return ;
}
int ltop = 0, rtop = 0, mid = (L + R) >> 1;
while (nwt < mid) nwt++, change(nwt, c[nwt]);//<= mid : add
while (nwt > mid) change(nwt, -c[nwt]), nwt--;//> mid : delete
for (register int i = st; i <= ed; ++i) {
ll sum = 0;
int id = opts[i].id;
for (register int j = 0; j < stat[id].size(); ++j) {
sum += q(stat[id][j]);
if (sum >= opts[i].x) {
sum = opts[i].x;
break;
}
}
if (opts[i].x <= sum) ql[++ltop] = opts[i];
else qr[++rtop] = opts[i];
}
for (register int i = 1; i <= ltop; ++i)
opts[st - 1 + i] = ql[i];
for (register int i = 1; i <= rtop; ++i)
opts[st - 1 + ltop + i] = qr[i];
sol(L, mid, st, st + ltop - 1);
sol(mid + 1, R, st + ltop, ed);
}

P1527 [国家集训队]矩阵乘法:二维数组的整体分治算法

题意:矩阵中询问子矩阵的第 k 大。

除了树状数组改为二维以外,无特殊的地方。同普通的整体分治求第k大。

介绍一种错误算法:

inline void tre_clear(int cur_x, int cur_y) {
for (register int i = cur_x; i <= n; i += lowbit(i))
for (register int j = cur_y; j <= n; j += lowbit(j)) {
//if (!tre[i][j]) return ;
tre[i][j] = 0;
}
}

将注释掉的代码加上将导致WA。但是不知道原因。可能原因比较复杂,尽量避免就好。

\(Code:\)my record

CDQ分治 & 整体分治的更多相关文章

  1. CDQ分治&整体二分学习个人小结

    目录 小结 CDQ分治 二维LIS 第一道裸题 bzoj1176 Mokia bzoj3262 陌上花开 bzoj 1790 矩形藏宝地 hdu5126四维偏序 P3157 [CQOI2011]动态逆 ...

  2. CQD(陈丹琦)分治 & 整体二分——专题小结

    整体二分和CDQ分治 有一些问题很多时间都坑在斜率和凸壳上了么--感觉斜率和凸壳各种搞不懂-- 整体二分 整体二分的资料好像不是很多,我在网上找到了一篇不错的资料:       整体二分是个很神的东西 ...

  3. Codeforces 161.D. Distance in Tree-树分治(点分治,不容斥版)-树上距离为K的点对数量-蜜汁TLE (VK Cup 2012 Round 1)

    D. Distance in Tree time limit per test 3 seconds memory limit per test 512 megabytes input standard ...

  4. 洛谷 P3806 【模板】点分治1-树分治(点分治,容斥版) 模板题-树上距离为k的点对是否存在

    P3806 [模板]点分治1 题目背景 感谢hzwer的点分治互测. 题目描述 给定一棵有n个点的树 询问树上距离为k的点对是否存在. 输入格式 n,m 接下来n-1条边a,b,c描述a到b有一条长度 ...

  5. POJ 1741.Tree and 洛谷 P4178 Tree-树分治(点分治,容斥版) +二分 模板题-区间点对最短距离<=K的点对数量

    POJ 1741. Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 34141   Accepted: 11420 ...

  6. 【题解】P4755 Beautiful Pair(启发式合并的思路+分治=启发式分治)

    [题解]P4755 Beautiful Pair upd: 之前一个first second烦了,现在AC了 由于之前是直接抄std写的,所以没有什么心得体会,今天自己写写发现 不知道为啥\(90\) ...

  7. 一篇自己都看不懂的CDQ分治&整体二分学习笔记

    作为一个永不咕咕咕的博主,我来更笔记辣qaq CDQ分治 CDQ分治的思想还是比较简单的.它的基本流程是: \(1.\)将所有修改操作和查询操作按照时间顺序并在一起,形成一段序列.显然,会影响查询操作 ...

  8. Cdq分治整体二分学习记录

    这点东西前前后后拖了好几个星期才学会……还是自己太菜啊. Cdq分治的思想是:把问题序列分割成左右两个,先单独处理左边,再处理左边对右边的影响,再单独处理右边.这样可以消去数据结构上的一个log,降低 ...

  9. [学习笔记] CDQ分治&整体二分

    突然诈尸.png 这两个东西好像都是离线骗分大法... 不过其实这两个东西并不是一样的... 虽然代码长得比较像 CDQ分治 基本思想 其实CDQ分治的基本思想挺简单的... 大概思路就是长这样的: ...

随机推荐

  1. [ C++ ] 勿在浮沙筑高台 —— 内存管理(9~16p)primitives(下)

    per-class allocator 2 tips: operator new重载 不会被派生类实际使用,因为父类大小内存的分配交给子类去调用明显是不正确的.实际上会被转交至 : : operato ...

  2. 网易java高级开发课程 面对上亿数据量,网易用啥技术?

  3. webpack4.*入门笔记

    全是跟着示例做的.看下面文章 入门 1.nodejs基础 http://www.runoob.com/nodejs/nodejs-tutorial.html 2.NPM 学习笔记整理 https:// ...

  4. webpack入门进阶(2)

    1.4.webpack-dev-server webpack-dev-server是我们在开发阶段需要用到的一个服务器,它会把代码打包到内存,我们可以通过http的方式访问到打包到内存的代码 安装 n ...

  5. js语法基础入门(1.2)

    1.4.查找元素的方法 1.4.1.查找元素的方法 JavaScript可以去操作html元素,要实现对html元素的操作,首选应该找到这个元素,有点类似于css中的选择器 html代码: <d ...

  6. java简介&&变量

    Day01 简介 数据 1.数据大体分为两类:基本类型和引用类型 2.基本类型的数据分为四类八种,四类为整型,浮点,布尔,字符 3.Long类型的数据超过int范围要在之后面加个L,不加L是整型会进行 ...

  7. 多线程下的list

    前言 list 是 Python 常用的几个基本数据类型之一.正常情况下我们会对 list 有增删改查的操作,显然易见不会有任何问题.那么如果我们试着在多线程下操作list 会有问题吗? 多线程下的 ...

  8. [译]高性能缓存库Caffeine介绍及实践

    概览 本文我们将介绍Caffeine-一个Java高性能缓存库.缓存和Map之间的一个根本区别是缓存会将储存的元素逐出.逐出策略决定了在什么时间应该删除哪些对象,逐出策略直接影响缓存的命中率,这是缓存 ...

  9. css中vertical-aling与line-height

    基线 baseline:字符x的底部 x-height: 字母x的高度,vertical-aling设置为middle的时候,对齐的是baseline往上1/2的x-height,所以vertical ...

  10. python 请使用迭代查找一个list中最小和最大值,并返回一个tuple

    请使用迭代查找一个list中最小和最大值,并返回一个tuple: 要注意返回的值的类型是不是tuple def findMinAndMax(L): min=0 max=0 if len(L)==0: ...