在下面的结构图中,每一个inception模块中都有一个1∗1的没有激活层的卷积层,用来扩展通道数,从而补偿因为inception模块导致的维度约间。其中Inception-ResNet-V1的结果与Inception v3相当;Inception-ResNet-V1与Inception v4结果差不多,不过实际过程中Inception v4会明显慢于Inception-ResNet-v2,这也许是因为层数太多了。且在Inception-ResNet结构中,只在传统层的上面使用BN层,而不在合并层上使用BN,虽然处处使用BN是有好处,不过更希望能够将一个完整的组件放入单独的GPU中。因为具有大量激活单元的层会占用过多的显存,所以希望这些地方丢弃BN,从而总体增加Inception模块的数量。使得不需要去解决计算资源和模块什么的权衡问题。

1. inception v4

                            **图1.1 inception v4 网络结构图**

                        **图1.2 图1.1的stem和Inception-A部分结构图**

                **图1.3 图1.1的Reduction-A和Inception-B部分结构图**

                **图1.4 图1.1的Reduction-B和Inception-C部分结构图**

2. Inception-resnet-v1 & Inception-resnet-v2

                **图2.1 Inception-resnet-v1 & Inception-resnet-v2的结构图**

2.1 Inception-resnet-v1的组成模块

            **图2.1.1 图2.1的stem和Inception-ResNet-A部分结构图**

            **图2.1.2 图2.1的Reduction-A和Inception-ResNet-B部分结构图**

            **图2.1.3 图2.1的Reduction-B和Inception-ResNet-C部分结构图**

2.2 Inception-resnet-v2的组成模块

                **图2.2.1 图2.1的stem和Inception-ResNet-A部分结构图**

        **图2.2.2 图2.1的Reduction-A和Inception-ResNet-B部分结构图**

            **图2.2.3 图2.1的Reduction-B和Inception-ResNet-C部分结构图**

3. 模型训练

在上述的Inception V4,Inception-Resnet-V1,Inception-ResNet-v2这三个模型中都用到了Reduction-A,他们各自的具体参数如下:

图3.1 不同模型下Reduction-A的模型超参数

作者们在训练的过程中发现,如果通道数超过1000,那么Inception-resnet等网络都会开始变得不稳定,并且过早的就“死掉了”,即在迭代几万次之后,平均池化的前面一层就会生成很多的0值。作者们通过调低学习率,增加BN都没有任何改善。

不过他们发现如果在将残差汇入之前,对残差进行缩小,可以让模型稳定训练,值通常选择[0,1.0.3],如图3.2

                **图3.2 对inception-resnet模块进行最后输出值的等比例缩小**

同样的在ResNet-v1中,何凯明等人也在cifar-10中发现了模型的不稳定现象:即在特别深的网络基础上去训cifar-10,需要先以0.01的学习率去训练,然后在以0.1的学习率训练。

不过这里的作者们认为如果通道数特别多的话,即使以特别低的学习率(0.00001)训练也无法让模型收敛,如果之后再用大学习率,那么就会轻松的破坏掉之前的成果。然而简单的缩小残差的输出值有助于学习的稳定,即使进行了简单的缩小,那么对最终结果也造成不了多大的损失,反而有助于稳定训练。

  • 在inception-resnet-v1与inception v3的对比中,inception-resnet-v1虽然训练速度更快,不过最后结果有那么一丢丢的差于inception v3;
  • 而在inception-resnet-v2与inception v4的对比中,inception-resnet-v2的训练速度更块,而且结果比inception v4也更好一点。所以最后胜出的就是inception-resnet-v2。

                            **图3.3 不同模型的结果对比**

4. 代码

4.1 Inception-V4

from keras.layers import Input
from keras.layers.merge import concatenate
from keras.layers import Dense, Dropout, Flatten, Activation, Conv2D
from keras.layers.convolutional import MaxPooling2D, AveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras import backend as K
from keras.models import Model
from keras.utils import plot_model CONV_BLOCK_COUNT = 0 # 用来命名计数卷积编号
INCEPTION_A_COUNT = 0
INCEPTION_B_COUNT = 0
INCEPTION_C_COUNT = 0 def conv_block(x, nb_filters, nb_row, nb_col, strides=(1, 1), padding='same', use_bias=False):
global CONV_BLOCK_COUNT
CONV_BLOCK_COUNT += 1
with K.name_scope('conv_block_'+str(CONV_BLOCK_COUNT)):
x = Conv2D(filters=nb_filters,
kernel_size=(nb_row, nb_col),
strides=strides,
padding=padding,
use_bias=use_bias)(x)
x = BatchNormalization(axis=-1, momentum=0.9997, scale=False)(x)
x = Activation("relu")(x)
return x def stem(x_input):
with K.name_scope('stem'):
x = conv_block(x_input, 32, 3, 3, strides=(2, 2), padding='valid')
x = conv_block(x, 32, 3, 3, padding='valid')
x = conv_block(x, 64, 3, 3) x1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')(x)
x2 = conv_block(x, 96, 3, 3, strides=(2, 2), padding='valid') x = concatenate([x1, x2], axis=-1) x1 = conv_block(x, 64, 1, 1)
x1 = conv_block(x1, 96, 3, 3, padding='valid') x2 = conv_block(x, 64, 1, 1)
x2 = conv_block(x2, 64, 7, 1)
x2 = conv_block(x2, 64, 1, 7)
x2 = conv_block(x2, 96, 3, 3, padding='valid') x = concatenate([x1, x2], axis=-1) x1 = conv_block(x, 192, 3, 3, strides=(2, 2), padding='valid')
x2 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')(x) merged_vector = concatenate([x1, x2], axis=-1)
return merged_vector def inception_A(x_input):
"""35*35 卷积块"""
global INCEPTION_A_COUNT
INCEPTION_A_COUNT += 1
with K.name_scope('inception_A' + str(INCEPTION_A_COUNT)):
averagepooling_conv1x1 = AveragePooling2D(pool_size=(3, 3), strides=(1, 1), padding='same')(x_input) # 35 * 35 * 192
averagepooling_conv1x1 = conv_block(averagepooling_conv1x1, 96, 1, 1) # 35 * 35 * 96 conv1x1 = conv_block(x_input, 96, 1, 1) # 35 * 35 * 96 conv1x1_3x3 = conv_block(x_input, 64, 1, 1) # 35 * 35 * 64
conv1x1_3x3 = conv_block(conv1x1_3x3, 96, 3, 3) # 35 * 35 * 96 conv3x3_3x3 = conv_block(x_input, 64, 1, 1) # 35 * 35 * 64
conv3x3_3x3 = conv_block(conv3x3_3x3, 96, 3, 3) # 35 * 35 * 96
conv3x3_3x3 = conv_block(conv3x3_3x3, 96, 3, 3) # 35 * 35 * 96 merged_vector = concatenate([averagepooling_conv1x1, conv1x1, conv1x1_3x3, conv3x3_3x3], axis=-1) # 35 * 35 * 384
return merged_vector def inception_B(x_input):
"""17*17 卷积块"""
global INCEPTION_B_COUNT
INCEPTION_B_COUNT += 1
with K.name_scope('inception_B' + str(INCEPTION_B_COUNT)):
averagepooling_conv1x1 = AveragePooling2D(pool_size=(3, 3), strides=(1, 1), padding='same')(x_input)
averagepooling_conv1x1 = conv_block(averagepooling_conv1x1, 128, 1, 1) conv1x1 = conv_block(x_input, 384, 1, 1) conv1x7_1x7 = conv_block(x_input, 192, 1, 1)
conv1x7_1x7 = conv_block(conv1x7_1x7, 224, 1, 7)
conv1x7_1x7 = conv_block(conv1x7_1x7, 256, 1, 7) conv2_1x7_7x1 = conv_block(x_input, 192, 1, 1)
conv2_1x7_7x1 = conv_block(conv2_1x7_7x1, 192, 1, 7)
conv2_1x7_7x1 = conv_block(conv2_1x7_7x1, 224, 7, 1)
conv2_1x7_7x1 = conv_block(conv2_1x7_7x1, 224, 1, 7)
conv2_1x7_7x1 = conv_block(conv2_1x7_7x1, 256, 7, 1) merged_vector = concatenate([averagepooling_conv1x1, conv1x1, conv1x7_1x7, conv2_1x7_7x1], axis=-1)
return merged_vector def inception_C(x_input):
"""8*8 卷积块"""
global INCEPTION_C_COUNT
INCEPTION_C_COUNT += 1
with K.name_scope('Inception_C' + str(INCEPTION_C_COUNT)):
averagepooling_conv1x1 = AveragePooling2D(pool_size=(3, 3), strides=(1, 1), padding='same')(x_input)
averagepooling_conv1x1 = conv_block(averagepooling_conv1x1, 256, 1, 1) conv1x1 = conv_block(x_input, 256, 1, 1) # 用 1x3 和 3x1 替代 3x3
conv3x3_1x1 = conv_block(x_input, 384, 1, 1)
conv3x3_1 = conv_block(conv3x3_1x1, 256, 1, 3)
conv3x3_2 = conv_block(conv3x3_1x1, 256, 3, 1) conv2_3x3_1x1 = conv_block(x_input, 384, 1, 1)
conv2_3x3_1x1 = conv_block(conv2_3x3_1x1, 448, 1, 3)
conv2_3x3_1x1 = conv_block(conv2_3x3_1x1, 512, 3, 1)
conv2_3x3_1x1_1 = conv_block(conv2_3x3_1x1, 256, 3, 1)
conv2_3x3_1x1_2 = conv_block(conv2_3x3_1x1, 256, 1, 3) merged_vector = concatenate([averagepooling_conv1x1, conv1x1, conv3x3_1, conv3x3_2, conv2_3x3_1x1_1, conv2_3x3_1x1_2], axis=-1)
return merged_vector def reduction_A(x_input, k=192, l=224, m=256, n=384):
with K.name_scope('Reduction_A'):
"""Architecture of a 35 * 35 to 17 * 17 Reduction_A block."""
maxpool = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')(x_input) conv3x3 = conv_block(x_input, n, 3, 3, strides=(2, 2), padding='valid') conv2_3x3 = conv_block(x_input, k, 1, 1)
conv2_3x3 = conv_block(conv2_3x3, l, 3, 3)
conv2_3x3 = conv_block(conv2_3x3, m, 3, 3, strides=(2, 2), padding='valid') merged_vector = concatenate([maxpool, conv3x3, conv2_3x3], axis=-1)
return merged_vector def reduction_B(x_input):
"""Architecture of a 17 * 17 to 8 * 8 Reduction_B block."""
with K.name_scope('Reduction_B'):
maxpool = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')(x_input) conv3x3 = conv_block(x_input, 192, 1, 1)
conv3x3 = conv_block(conv3x3, 192, 3, 3, strides=(2, 2), padding='valid') conv1x7_7x1_3x3 = conv_block(x_input, 256, 1, 1)
conv1x7_7x1_3x3 = conv_block(conv1x7_7x1_3x3, 256, 1, 7)
conv1x7_7x1_3x3 = conv_block(conv1x7_7x1_3x3, 320, 7, 1)
conv1x7_7x1_3x3 = conv_block(conv1x7_7x1_3x3, 320, 3, 3, strides=(2, 2), padding='valid') merged_vector = concatenate([maxpool, conv3x3, conv1x7_7x1_3x3], axis=-1)
return merged_vector def inception_v4_backbone(nb_classes=1000, load_weights=True):
x_input = Input(shape=(299, 299, 3))
# Stem
x = stem(x_input) # 35 x 35 x 384
# 4 x Inception_A
for i in range(4):
x = inception_A(x) # 35 x 35 x 384
# Reduction_A
x = reduction_A(x, k=192, l=224, m=256, n=384) # 17 x 17 x 1024
# 7 x Inception_B
for i in range(7):
x = inception_B(x) # 17 x 17 x1024
# Reduction_B
x = reduction_B(x) # 8 x 8 x 1536
# Average Pooling
x = AveragePooling2D(pool_size=(8, 8))(x) # 1536
# dropout
x = Dropout(0.2)(x)
x = Flatten()(x) # 1536
# 全连接层
x = Dense(units=nb_classes, activation='softmax')(x)
model = Model(inputs=x_input, outputs=x, name='Inception-V4')
return model if __name__ == '__main__':
inception_v4 = inception_v4_backbone()
plot_model(inception_v4, 'inception_v4.png', show_shapes=True)

4.2 inception_resnet_v1

from keras.layers import Input
from keras.layers.merge import concatenate, add
from keras.layers import Dense, Dropout, Lambda, Flatten, Activation, Conv2D
from keras.layers.convolutional import MaxPooling2D, AveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras import backend as K
from keras.utils import plot_model RESNET_V1_A_COUNT = 0
RESNET_V1_B_COUNT = 0
RESNET_V1_C_COUNT = 0 def resnet_v1_stem(x_input):
with K.name_scope('Stem'):
x = Conv2D(filters=32, kernel_size=(3, 3), strides=(2, 2), activation='relu', padding='valid')(x_input)
x = Conv2D(32, (3, 3), activation='relu', padding='valid')(x)
x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D(pool_size=(3, 3), strides=2, padding='valid')(x)
x = Conv2D(80, (1, 1), activation='relu', padding='same')(x)
x = Conv2D(192, (3, 3), activation='relu', padding='valid')(x)
x = Conv2D(256, (3, 3), strides=(2, 2), activation='relu', padding='valid')(x)
x = BatchNormalization(axis=-1)(x)
x = Activation('relu')(x)
return x def inception_resnet_v1_A(x_input, scale_residual=True):
""" 35x35 卷积核"""
global RESNET_V1_A_COUNT
RESNET_V1_A_COUNT += 1
with K.name_scope('resnet_v1_A' + str(RESNET_V1_A_COUNT)):
ar1 = Conv2D(32, (1, 1), activation='relu', padding='same')(x_input) ar2 = Conv2D(32, (1, 1), activation='relu', padding='same')(x_input)
ar2 = Conv2D(32, (3, 3), activation='relu', padding='same')(ar2) ar3 = Conv2D(32, (1, 1), activation='relu', padding='same')(x_input)
ar3 = Conv2D(32, (3, 3), activation='relu', padding='same')(ar3)
ar3 = Conv2D(32, (3, 3), activation='relu', padding='same')(ar3) merged_vector = concatenate([ar1, ar2, ar3], axis=-1) ar = Conv2D(256, (1, 1), activation='linear', padding='same')(merged_vector) if scale_residual: # 是否缩小
ar = Lambda(lambda x: 0.1*x)(ar)
x = add([x_input, ar])
x = BatchNormalization(axis=-1)(x)
x = Activation('relu')(x)
return x def inception_resnet_v1_B(x_input, scale_residual=True):
""" 17x17 卷积核"""
global RESNET_V1_B_COUNT
RESNET_V1_B_COUNT += 1
with K.name_scope('resnet_v1_B' + str(RESNET_V1_B_COUNT)):
br1 = Conv2D(128, (1, 1), activation='relu', padding='same')(x_input) br2 = Conv2D(128, (1, 1), activation='relu', padding='same')(x_input)
br2 = Conv2D(128, (1, 7), activation='relu', padding='same')(br2)
br2 = Conv2D(128, (7, 1), activation='relu', padding='same')(br2) merged_vector = concatenate([br1, br2], axis=-1) br = Conv2D(896, (1, 1), activation='linear', padding='same')(merged_vector) if scale_residual:
br = Lambda(lambda x: 0.1*x)(br)
x = add([x_input, br])
x = BatchNormalization(axis=-1)(x)
x = Activation('relu')(x) return x def inception_resnet_v1_C(x_input, scale_residual=True):
global RESNET_V1_C_COUNT
RESNET_V1_C_COUNT += 1
with K.name_scope('resnet_v1_C' + str(RESNET_V1_C_COUNT)):
cr1 = Conv2D(192, (1, 1), activation='relu', padding='same')(x_input) cr2 = Conv2D(192, (1, 1), activation='relu', padding='same')(x_input)
cr2 = Conv2D(192, (1, 3), activation='relu', padding='same')(cr2)
cr2 = Conv2D(192, (3, 1), activation='relu', padding='same')(cr2) merged_vector = concatenate([cr1, cr2], axis=-1) cr = Conv2D(1792, (1, 1), activation='relu', padding='same')(merged_vector) if scale_residual:
cr = Lambda(lambda x: 0.1*x)
x = add([x_input, cr])
x = BatchNormalization(axis=-1)(x)
x = Activation('relu')(x)
return x def reduction_resnet_A(x_input, k=192, l=224, m=256, n=384):
with K.name_scope('reduction_resnet_A'):
ra1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')(x_input) ra2 = Conv2D(n, (3, 3), activation='relu', strides=(2, 2), padding='valid')(x_input) ra3 = Conv2D(k, (1, 1), activation='relu', padding='same')(x_input)
ra3 = Conv2D(l, (3, 3), activation='relu', padding='same')(ra3)
ra3 = Conv2D(m, (3, 3), activation='relu', strides=(2, 2), padding='valid')(ra3) merged_vector = concatenate([ra1, ra2, ra3], axis=-1) x = BatchNormalization(axis=-1)(merged_vector)
x = Activation('relu')(x)
return x def reduction_resnet_B(x_input):
with K.name_scope('reduction_resnet_B'):
rb1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2),padding='valid')(x_input) rb2 = Conv2D(256, (1, 1), activation='relu', padding='same')(x_input)
rb2 = Conv2D(384, (3, 3), strides=(2, 2), activation='relu', padding='valid')(rb2) rb3 = Conv2D(256, (1, 1),activation='relu', padding='same')(x_input)
rb3 = Conv2D(256, (3, 3), strides=(2, 2), activation='relu', padding='valid')(rb3) rb4 = Conv2D(256, (1, 1), activation='relu', padding='same')(x_input)
rb4 = Conv2D(256, (3, 3), activation='relu', padding='same')(rb4)
rb4 = Conv2D(256, (3, 3), strides=(2, 2), activation='relu', padding='valid')(rb4) merged_vector = concatenate([rb1, rb2, rb3, rb4], axis=-1) x = BatchNormalization(axis=-1)(merged_vector)
x = Activation('relu')(x)
return x def inception_resnet_v1_backbone(nb_classes=1000, scale=True):
x_input = Input(shape=(299, 299, 3))
# stem
x = resnet_v1_stem(x_input) # 5 x inception_resnet_v1_A
for i in range(5):
x = inception_resnet_v1_A(x, scale_residual=False) # reduction_resnet_A
x = reduction_resnet_A(x, k=192, l=192, m=256, n=384) # 10 x inception_resnet_v1_B
for i in range(10):
x = inception_resnet_v1_B(x, scale_residual=True) # Reduction B
x = reduction_resnet_B(x) # 5 x Inception C
for i in range(5):
x = inception_resnet_v1_C(x, scale_residual=True) # Average Pooling
x = AveragePooling2D(pool_size=(8, 8))(x) # dropout
x = Dropout(0.2)(x)
x = Flatten()(x)
x = Dense(units=nb_classes, activation='softmax')(x) return Model(inputs=x_input, outputs=x, name='Inception-Resnet-v1') if __name__ == '__main__':
inception_resnet_v1_model = inception_resnet_v1_backbone()
plot_model(inception_resnet_v1_model, to_file='inception_resnet_v1.png', show_shapes=True)

4.3 inception_resnet_v2

from keras.layers import Input, add
from keras.layers.merge import concatenate
from keras.layers import Dense, Dropout, Lambda, Flatten, Activation, Conv2D
from keras.layers.convolutional import MaxPooling2D, AveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from inception_resnet_v1 import reduction_resnet_A
from keras.utils import plot_model
import keras.backend as K RESNET_V2_A_COUNT = 0
RESNET_V2_B_COUNT = 0
RESNET_V2_C_COUNT = 0 def resnet_v2_stem(x_input):
'''The stem of the pure Inception-v4 and Inception-ResNet-v2 networks. This is input part of those networks.''' # Input shape is 299 * 299 * 3 (Tensorflow dimension ordering)
with K.name_scope("stem"):
x = Conv2D(32, (3, 3), activation="relu", strides=(2, 2))(x_input) # 149 * 149 * 32
x = Conv2D(32, (3, 3), activation="relu")(x) # 147 * 147 * 32
x = Conv2D(64, (3, 3), activation="relu", padding="same")(x) # 147 * 147 * 64 x1 = MaxPooling2D((3, 3), strides=(2, 2))(x)
x2 = Conv2D(96, (3, 3), activation="relu", strides=(2, 2))(x) x = concatenate([x1, x2], axis=-1) # 73 * 73 * 160 x1 = Conv2D(64, (1, 1), activation="relu", padding="same")(x)
x1 = Conv2D(96, (3, 3), activation="relu")(x1) x2 = Conv2D(64, (1, 1), activation="relu", padding="same")(x)
x2 = Conv2D(64, (7, 1), activation="relu", padding="same")(x2)
x2 = Conv2D(64, (1, 7), activation="relu", padding="same")(x2)
x2 = Conv2D(96, (3, 3), activation="relu", padding="valid")(x2) x = concatenate([x1, x2], axis=-1) # 71 * 71 * 192 x1 = Conv2D(192, (3, 3), activation="relu", strides=(2, 2))(x) x2 = MaxPooling2D((3, 3), strides=(2, 2))(x) x = concatenate([x1, x2], axis=-1) # 35 * 35 * 384 x = BatchNormalization(axis=-1)(x)
x = Activation("relu")(x)
return x def inception_resnet_v2_A(x_input, scale_residual=True):
'''Architecture of Inception_ResNet_A block which is a 35 * 35 grid module.'''
global RESNET_V2_A_COUNT
RESNET_V2_A_COUNT += 1
with K.name_scope('inception_resnet_v2_A' + str(RESNET_V2_A_COUNT)):
ar1 = Conv2D(32, (1, 1), activation="relu", padding="same")(x_input) ar2 = Conv2D(32, (1, 1), activation="relu", padding="same")(x_input)
ar2 = Conv2D(32, (3, 3), activation="relu", padding="same")(ar2) ar3 = Conv2D(32, (1, 1), activation="relu", padding="same")(x_input)
ar3 = Conv2D(48, (3, 3), activation="relu", padding="same")(ar3)
ar3 = Conv2D(64, (3, 3), activation="relu", padding="same")(ar3) merged = concatenate([ar1, ar2, ar3], axis=-1) ar = Conv2D(384, (1, 1), activation="linear", padding="same")(merged)
if scale_residual: ar = Lambda(lambda a: a * 0.1)(ar) x = add([x_input, ar])
x = BatchNormalization(axis=-1)(x)
x = Activation("relu")(x)
return x def inception_resnet_v2_B(x_input, scale_residual=True):
'''Architecture of Inception_ResNet_B block which is a 17 * 17 grid module.'''
global RESNET_V2_B_COUNT
RESNET_V2_B_COUNT += 1
with K.name_scope('inception_resnet_v2_B' + str(RESNET_V2_B_COUNT)):
br1 = Conv2D(192, (1, 1), activation="relu", padding="same")(x_input) br2 = Conv2D(128, (1, 1), activation="relu", padding="same")(x_input)
br2 = Conv2D(160, (1, 7), activation="relu", padding="same")(br2)
br2 = Conv2D(192, (7, 1), activation="relu", padding="same")(br2) merged = concatenate([br1, br2], axis=-1) br = Conv2D(1152, (1, 1), activation="linear", padding="same")(merged)
if scale_residual: br = Lambda(lambda b: b * 0.1)(br) x = add([x_input, br])
x = BatchNormalization(axis=-1)(x)
x = Activation("relu")(x)
return x def inception_resnet_v2_C(x_input, scale_residual=True):
'''Architecture of Inception_ResNet_C block which is a 8 * 8 grid module.'''
global RESNET_V2_C_COUNT
RESNET_V2_C_COUNT += 1
with K.name_scope('inception_resnet_v2_C' + str(RESNET_V2_C_COUNT)):
cr1 = Conv2D(192, (1, 1), activation="relu", padding="same")(x_input) cr2 = Conv2D(192, (1, 1), activation="relu", padding="same")(x_input)
cr2 = Conv2D(224, (1, 3), activation="relu", padding="same")(cr2)
cr2 = Conv2D(256, (3, 1), activation="relu", padding="same")(cr2) merged = concatenate([cr1, cr2], axis=-1) cr = Conv2D(2144, (1, 1), activation="linear", padding="same")(merged)
if scale_residual: cr = Lambda(lambda c: c * 0.1)(cr) x = add([x_input, cr])
x = BatchNormalization(axis=-1)(x)
x = Activation("relu")(x)
return x def reduction_resnet_v2_B(x_input):
'''Architecture of a 17 * 17 to 8 * 8 Reduction_ResNet_B block.'''
with K.name_scope('reduction_resnet_v2_B'):
rbr1 = MaxPooling2D((3, 3), strides=(2, 2), padding="valid")(x_input) rbr2 = Conv2D(256, (1, 1), activation="relu", padding="same")(x_input)
rbr2 = Conv2D(384, (3, 3), activation="relu", strides=(2, 2))(rbr2) rbr3 = Conv2D(256, (1, 1), activation="relu", padding="same")(x_input)
rbr3 = Conv2D(288, (3, 3), activation="relu", strides=(2, 2))(rbr3) rbr4 = Conv2D(256, (1, 1), activation="relu", padding="same")(x_input)
rbr4 = Conv2D(288, (3, 3), activation="relu", padding="same")(rbr4)
rbr4 = Conv2D(320, (3, 3), activation="relu", strides=(2, 2))(rbr4) merged = concatenate([rbr1, rbr2, rbr3, rbr4], axis=-1)
rbr = BatchNormalization(axis=-1)(merged)
rbr = Activation("relu")(rbr)
return rbr def inception_resnet_v2(nb_classes=1001, scale=True):
'''Creates the Inception_ResNet_v1 network.''' init = Input((299, 299, 3)) # Channels last, as using Tensorflow backend with Tensorflow image dimension ordering # Input shape is 299 * 299 * 3
x = resnet_v2_stem(init) # Output: 35 * 35 * 256 # 5 x Inception A
for i in range(5):
x = inception_resnet_v2_A(x, scale_residual=scale)
# Output: 35 * 35 * 256 # Reduction A
x = reduction_resnet_A(x, k=256, l=256, m=384, n=384) # Output: 17 * 17 * 896 # 10 x Inception B
for i in range(10):
x = inception_resnet_v2_B(x, scale_residual=scale)
# Output: 17 * 17 * 896 # Reduction B
x = reduction_resnet_v2_B(x) # Output: 8 * 8 * 1792 # 5 x Inception C
for i in range(5):
x = inception_resnet_v2_C(x, scale_residual=scale)
# Output: 8 * 8 * 1792 # Average Pooling
x = AveragePooling2D((8, 8))(x) # Output: 1792 # Dropout
x = Dropout(0.2)(x) # Keep dropout 0.2 as mentioned in the paper
x = Flatten()(x) # Output: 1792 # Output layer
output = Dense(units=nb_classes, activation="softmax")(x) # Output: 10000 model = Model(init, output, name="Inception-ResNet-v2") return model if __name__ == "__main__":
inception_resnet_v2_model = inception_resnet_v2()
plot_model(inception_resnet_v2_model, to_file='inception_resnet_v2.png', show_shapes=True)

InceptionV4的更多相关文章

  1. 【Network Architecture】Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning(转)

    文章来源: https://www.cnblogs.com/shouhuxianjian/p/7786760.html Feature Extractor[Inception v4] 0. 背景 随着 ...

  2. Tensorflow 训练inceptionV4 并移植

    安装brazel    (请使用最新版的brazel  和最新版的tensorflow  ,版本不匹配会出错!!!) 下载bazel-0.23   https://pan.baidu.com/s/1X ...

  3. (转) Awesome - Most Cited Deep Learning Papers

    转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers ...

  4. awesome-very-deep-learning

    awesome-very-deep-learning is a curated list for papers and code about implementing and training ver ...

  5. 学习笔记TF032:实现Google Inception Net

    Google Inception Net,ILSVRC 2014比赛第一名.控制计算量.参数量,分类性能非常好.V1,top-5错误率6.67%,22层,15亿次浮点运算,500万参数(AlexNet ...

  6. 读论文系列:Deep transfer learning person re-identification

    读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao X ...

  7. 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络GoogLeNet

    前面讲了LeNet.AlexNet和Vgg,这周来讲讲GoogLeNet.GoogLeNet是由google的Christian Szegedy等人在2014年的论文<Going Deeper ...

  8. 【深度学习系列】用PaddlePaddle和Tensorflow实现GoogLeNet InceptionV2/V3/V4

    上一篇文章我们引出了GoogLeNet InceptionV1的网络结构,这篇文章中我们会详细讲到Inception V2/V3/V4的发展历程以及它们的网络结构和亮点. GoogLeNet Ince ...

  9. 吐血整理:人工智能PDF中文教材资源包2.73G基本包含全部学习资料-人工智能学习书单

    吐血整理:人工智能PDF中文教材资源包2.73G基本包含全部学习资料 人工智能学习书单(关注微信公众号:aibbtcom获取更多资源) 文末附百度网盘下载地址 人工神经网络与盲信号处理 人工神经网络与 ...

随机推荐

  1. loadRunnner中90%的响应时间

    参考博客https://blog.csdn.net/lengyue_112/article/details/1095320?utm_source=blogxgwz4 LR在场景执行完了会出个报告,其中 ...

  2. JavaWeb网上图书商城完整项目--day02-11.激活功能流程分析

    1.当用户注册成功之后,会给用户发送邮件,当用户点击邮件的激活按钮的时候,会调用UserServlet中的activation的方法,并且会把激活码传递到后台,后台业务层对业务进行操作

  3. 图灵学院-微服务11-分布式链路跟踪Sleuth详解

    当客户端访问到第一个service 1的时候,会生成当前链路追踪的一个全局的trance ID,在一次调用过Service1--Service2--Service3--Service4时,整个服务访问 ...

  4. git 远程分支和tag标签的操作

    git远程分支操作:1.创建远程分支git push --set-upstream origin develop:develop2在服务器创建远程分支devlop2,让本地的develop分支和dev ...

  5. c语言中的c语言中realloc()函数解析

    c语言中realloc()函数解析 真是有点惭愧,这些内容本应该很早就掌握的,以前只是糊里糊涂的用,不知道在内存中具体是怎么回事,现在才弄清楚. realloc(void *__ptr, size_t ...

  6. viewerjs 在html打开图片或打开pdf文件使用案例

    开发者常用到在线访问pdf,txt,浏览图片的插件,这里推荐viewer.js这个插件,简单好用.它的核心亮点就是查看图片和pdf功能.老早以前就用过的,昨天一个小伙伴问我Android开发在线浏览p ...

  7. Spring9——通过用Aware接口使用Spring底层组件、环境切换

    通过用Aware接口使用Spring底层组件 能够供我们使用的组件,都是Aware的子接口. ApplicationContextAware:实现步骤:             (1)实现Applic ...

  8. .netcore项目codefirst时使用的配置文件是appsettings.json

    .netcore项目创建完毕后,会发现项目中有好几个配置文件: appsettings.json appsettings.Development.json appsettings.Production ...

  9. ORA-39257: Data cannot be remapped for more than 10 columns.

    ORA-39257: Data cannot be remapped for more than 10 columns. 前言 还是脱敏数据相关的事情. 使用expdp的remap_data参数对指定 ...

  10. 前端性能优化_css加载会造成哪些阻塞现象?

    css的加载是不会阻塞DOM的解析,但是会阻塞DOM的渲染,会阻塞link后面js语句的执行.这是由于浏览器为了防止html页面的重复渲染而降低性能,所以浏览器只会在加载的时候去解析dom树,然后等在 ...