HBase性能优化完全版
近期在处理HBase的业务方面常常遇到各种瓶颈,一天大概一亿条数据,在HBase性能调优方面进行相关配置和调优后取得了一定的成效,于是,特此在这里总结了一下关于HBase全面的配置,主要参考我的另外两篇文章:
(1)http://blog.csdn.net/u014297175/article/details/47975875
(2)http://blog.csdn.net/u014297175/article/details/47976909
在其基础上总结出来的性能优化方法。
1.垃圾回收优化
Java本身提供了垃圾回收机制,依靠JRE对程序行为的各种假设进行垃圾回收,但是HBase支持海量数据持续入库,非常占用内存,因此繁重的负载会迫使内存分配策略无法安全地依赖于JRE的判断:需要调整JRE的参数来调整垃圾回收策略。有关java内存回收机制的问题具体请参考:http://my.oschina.net/sunnywu/blog/332870。
(1)HBASE_OPTS或者HBASE_REGIONSERVER_OPT变量来设置垃圾回收的选项,后面一般是用于配置RegionServer的,需要在每个子节点的HBASE_OPTS文件中进行配置。
1)首先是设置新生代大小的参数,不能过小,过小则导致年轻代过快成为老生代,引起老生代产生内存随便。同样不能过大,过大导致所有的JAVA进程停止时间长。-XX:MaxNewSize=256m-XX:NewSize=256m 这两个可以合并成为-Xmn256m这一个配置来完成。
2)其次是设置垃圾回收策略:-XX:+UseParNewGC -XX:+UseConcMarkSweepGC也叫收集器设置。
3)设置CMS的值,占比多少时,开始并发标记和清扫检查。-XX:CMSInitiatingOccupancyFraction=70
4)打印垃圾回收信息:-verbose:gc -XX: +PrintGCDetails -XX:+PrintGCTimeStamps
-Xloggc:$HBASE_HOME/logs/gc-$(hostname)-hbase.log
最终可以得到:HBASE_REGIONSERVER_OPT="-Xmx8g -Xms8g –Xmn256m -XX:+UseParNewGC -XX:+UseConcMarkSweepGC \
-XX:CMSInitiatingOccupancyFraction=70 -verbose:gc \
-XX:+PrintGCDetails -XX:+PrintGCTimeStamps \
-Xloggc:$HBASE_HOME/logs/gc-$(hostname)-hbase.log
(2)hbase.hregion.memstore.mslab.enabled默认值:true,这个是在hbase-site.xml中进行配置的值。
说明:减少因内存碎片导致的Full GC,提高整体性能。
2.启用压缩,详情自行搜索,暂时未曾尝试,后面持续更新。
3.优化Region拆分合并以及与拆分Region
(1)hbase.hregion.max.filesize默认为256M(在hbase-site.xml中进行配置),当region达到这个阈值时,会自动拆分。可以把这个值设的无限大,则可以关闭HBase自动管理拆分,手动运行命令来进行region拆分,这样可以在不同的region上交错运行,分散I/O负载。
(2)预拆分region
用户可以在建表的时候就制定好预设定的region,这样就可以避免后期region自动拆分造成I/O负载。
4.客户端入库调优
(1)用户在编写程序入库时,HBase的自动刷写是默认开启的,即用户每一次put都会提交到HBase server进行一次刷写,如果需要高速插入数据,则会造成I/O负载过重。在这里可以关闭自动刷写功能,setAutoFlush(false)。如此,put实例会先写到一个缓存中,这个缓存的大小通过hbase.client.write.buffer这个值来设定缓存区,当缓存区被填满之后才会被送出。如果想要显示刷写数据,可以调用flushCommits()方法。
此处引申:采取这个方法要估算服务器端内存占用则可以:hbase.client.write.buffer*hbase.regionserver.handler.count得出内存情况。
(2)第二个方法,是关闭每次put上的WAL(writeToWAL(flase))这样可以刷写数据前,不需要预写日志,但是如果数据重要的话建议不要关闭。
(3)hbase.client.scanner.caching:默认为1
这是设计客户端读取数据的配置调优,在hbase-site.xml中进行配置,代表scanner一次缓存多少数据(从服务器一次抓取多少数据来scan)默认的太小,但是对于大文件,值不应太大。
(4)hbase.regionserver.lease.period默认值:60000
说明:客户端租用HRegion server 期限,即超时阀值。
调优:这个配合hbase.client.scanner.caching使用,如果内存够大,但是取出较多数据后计算过程较长,可能超过这个阈值,适当可设置较长的响应时间以防被认为宕机。
(5)还有诸多实践,如设置过滤器,扫描缓存等,指定行扫描等多种客户端调优方案,需要在实践中慢慢挖掘。
5.HBase配置文件
上面涉及到的调优内容或多或少在HBase配置文件中都有所涉及,因此,下面的配置不涵盖上面已有的配置。
(1) zookeeper.session.timeout(默认3分钟)
ZK的超期参数,默认配置为3分钟,在生产环境上建议减小这个值在1分钟或更小。
设置原则:这个值越小,当RS故障时Hmaster获知越快,Hlog分裂和region 部署越快,集群恢复时间越短。 但是,设置这个值得原则是留足够的时间进行GC回收,否则会导致频繁的RS宕机。一般就做默认即可
(2)hbase.regionserver.handler.count(默认10)
对于大负载的put(达到了M范围)或是大范围的Scan操作,handler数目不易过大,易造成OOM。 对于小负载的put或是get,delete等操作,handler数要适当调大。根据上面的原则,要看我们的业务的情况来设置。(具体情况具体分析)。
(3)HBASE_HEAPSIZE(hbase-env.sh中配置)
我的前两篇文章Memstoresize40%(默认) blockcache 20%(默认)就是依据这个而成的,总体HBase内存配置。设到机器内存的1/2即可。
(4)选择使用压缩算法,目前HBase默认支持的压缩算法包括GZ,LZO以及snappy(hbase-site.xml中配置)
(5)hbase.hregion.max.filesize默认256M
上面说过了,hbase自动拆分region的阈值,可以设大或者无限大,无限大需要手动拆分region,懒的人别这样。
(6)hbase.hregion.memstore.flush.size
单个region内所有的memstore大小总和超过指定值时,flush该region的所有memstore。
(7)hbase.hstore.blockingStoreFiles 默认值:7
说明:在flush时,当一个region中的Store(CoulmnFamily)内有超过7个storefile时,则block所有的写请求进行compaction,以减少storefile数量。
调优:block写请求会严重影响当前regionServer的响应时间,但过多的storefile也会影响读性能。从实际应用来看,为了获取较平滑的响应时间,可将值设为无限大。如果能容忍响应时间出现较大的波峰波谷,那么默认或根据自身场景调整即可。
(8)hbase.hregion.memstore.block.multiplier默认值:2
说明:当一个region里总的memstore占用内存大小超过hbase.hregion.memstore.flush.size两倍的大小时,block该region的所有请求,进行flush,释放内存。
虽然我们设置了region所占用的memstores总内存大小,比如64M,但想象一下,在最后63.9M的时候,我Put了一个200M的数据,此时memstore的大小会瞬间暴涨到超过预期的hbase.hregion.memstore.flush.size的几倍。这个参数的作用是当memstore的大小增至超过hbase.hregion.memstore.flush.size 2倍时,block所有请求,遏制风险进一步扩大。
调优: 这个参数的默认值还是比较靠谱的。如果你预估你的正常应用场景(不包括异常)不会出现突发写或写的量可控,那么保持默认值即可。如果正常情况下,你的写请求量就会经常暴长到正常的几倍,那么你应该调大这个倍数并调整其他参数值,比如hfile.block.cache.size和hbase.regionserver.global.memstore.upperLimit/lowerLimit,以预留更多内存,防止HBase server OOM。
(9)hbase.regionserver.global.memstore.upperLimit:默认40%
当ReigonServer内所有region的memstores所占用内存总和达到heap的40%时,HBase会强制block所有的更新并flush这些region以释放所有memstore占用的内存。
hbase.regionserver.global.memstore.lowerLimit:默认35%
同upperLimit,只不过lowerLimit在所有region的memstores所占用内存达到Heap的35%时,不flush所有的memstore。它会找一个memstore内存占用最大的region,做个别flush,此时写更新还是会被block。lowerLimit算是一个在所有region强制flush导致性能降低前的补救措施。在日志中,表现为 “** Flushthread woke up with memory above low water.”。
调优:这是一个Heap内存保护参数,默认值已经能适用大多数场景。
(10)hfile.block.cache.size:默认20%
这是涉及hbase读取文件的主要配置,BlockCache主要提供给读使用。读请求先到memstore中查数据,查不到就到blockcache中查,再查不到就会到磁盘上读,并把读的结果放入blockcache。由于blockcache是一个LRU,因此blockcache达到上限(heapsize * hfile.block.cache.size)后,会启动淘汰机制,淘汰掉最老的一批数据。对于注重读响应时间的系统,应该将blockcache设大些,比如设置blockcache=0.4,memstore=0.39,这会加大缓存命中率。
(11)hbase.regionserver.hlog.blocksize和hbase.regionserver.maxlogs
之所以把这两个值放在一起,是因为WAL的最大值由hbase.regionserver.maxlogs*hbase.regionserver.hlog.blocksize (2GB by default)决定。一旦达到这个值,Memstore flush就会被触发。所以,当你增加Memstore的大小以及调整其他的Memstore的设置项时,你也需要去调整HLog的配置项。否则,WAL的大小限制可能会首先被触发,因而,你将利用不到其他专门为Memstore而设计的优化。抛开这些不说,通过WAL限制来触发Memstore的flush并非最佳方式,这样做可能会会一次flush很多Region,尽管“写数据”是很好的分布于整个集群,进而很有可能会引发flush“大风暴”。
提示:最好将hbase.regionserver.hlog.blocksize* hbase.regionserver.maxlogs 设置为稍微大于hbase.regionserver.global.memstore.lowerLimit* HBASE_HEAPSIZE。
6.HDFS优化部分
HBase是基于hdfs文件系统的一个数据库,其数据最终是写到hdfs中的,因此涉及hdfs调优的部分也是必不可少的。
(1)dfs.replication.interval:默认3秒
可以调高,避免hdfs频繁备份,从而提高吞吐率。
(2)dfs.datanode.handler.count:默认为10
可以调高这个处理线程数,使得写数据更快
(3)dfs.namenode.handler.count:默认为8
(4)dfs.datanode.socket.write.timeout:默认480秒,并发写数据量大的时候可以调高一些,否则会出现我另外一篇博客介绍的的错误。
(5)dfs.socket.timeout:最好也要调高,默认的很小。
同上,可以调高,提高整体速度与性能。
HBase性能优化完全版的更多相关文章
- hbase性能优化总结
hbase性能优化总结 1. 表的设计 1.1 Pre-Creating Regions 默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都 ...
- Hadoop生态圈-HBase性能优化
Hadoop生态圈-HBase性能优化 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.
- HBase性能优化方法总结(转)
原文链接:HBase性能优化方法总结(一):表的设计 本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. ...
- Hbase性能优化
HBase性能优化方法总结 1. 表的设计 1.1 Pre-Creating Regions 默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户 ...
- HBase性能优化方法总结(转)
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,这里涉及的不多,这部分可以参考:淘宝Ken Wu同学的博客. 1. 表的设计 1.1 Pr ...
- HBase性能优化方法总结(一):表的设计
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. 下面是本文总结的第一部分内容:表的设计相关的优化方法 ...
- Hbase框架原理及相关的知识点理解、Hbase访问MapReduce、Hbase访问Java API、Hbase shell及Hbase性能优化总结
转自:http://blog.csdn.net/zhongwen7710/article/details/39577431 本blog的内容包含: 第一部分:Hbase框架原理理解 第二部分:Hbas ...
- HBase性能优化方法总结(二):写表操作
转自:http://www.cnblogs.com/panfeng412/archive/2012/03/08/hbase-performance-tuning-section2.html 本文主要是 ...
- HBase性能优化方法总结(三):读表操作
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. 下面是本文总结的第三部分内容:读表操作相关的优化方法 ...
随机推荐
- springboot 发布 war jar区别
fatjar 看下springboot打成jar包后的结构和内容: springboot项目打包的jar 普通jar: 传统jar 通过上面两个图的对比,我们知道这个JAR包与传统JAR包的不同之处在 ...
- linuix查端口
根据进程pid查端口:netstat -nap | grep pid 根据端口port查进程:netstat -nap | grep port 根据pid查找文件的启动位置 ps aux | gre ...
- .NET 云原生架构师训练营(模块二 基础巩固 消息队列 介绍与基础)--学习笔记
2.6.1 消息队列 -- 介绍 主要使用场景 队列的三种形式 消息队列的优点 主要使用场景 典型的异步处理 流量削锋 应用解耦 队列的三种形式 点对点 工作队列 发布与订阅 消息队列的优点 1.屏蔽 ...
- 伪静态 RewriteRule-htaccess
伪静态实际上是利用PHP把当前地址解析成另一种方法来访问网站,要学伪静态规则的写法,要懂一点正则 一.正则表达式教程 有一个经典的教程:正则表达式30分钟入门教程 常用正则如下: . 换行符以外的所有 ...
- 【MyBatis】MyBatis CRUD
MyBtis CRUD 文章源码 基于代理 DAO 的 CRUD 根据 ID 查询操作 在持久层接口中添加 findById 方法: public interface UserDAO { /** * ...
- 【C++】《C++ Primer 》第十八章
第十八章 用于大型程序的工具 大规模应用程序的特殊要求包括: 在独立开发的子系统之间协同处理错误的能力. 使用各种库进行协同开发的能力. 对比较复杂的应用概念建模的能力. 一.异常处理 异常处理(ex ...
- TCP/IP五层模型-应用层-DNS协议
1.定义:域名解析协议,把域名解析成对应的IP地址. 2.分类:①迭代解析:DNS所在服务器若没有可以响应的结果,会向客户机提供其他能够解析查询请求的DNS服务器地址,当客户机发送查询请求时,DNS ...
- 原生javascript制作省市区三级联动详细教程
多级联动下拉菜单是前端常见的效果,省市区三级联动又属于其中最典型的案例.多级联动一般都是与数据相关联的,根据数据来生成和修改联动的下拉菜单.完成一个多级联动效果,有助于增强对数据处理的能力. 本实例以 ...
- 攻防世界 - Crypto(一)
base64: 根据题目base64可知编码方式,下载附件发现是一个txt文件,把内容用工具解码就彳亍了,即可得到flag, flag: cyberpeace{Welcome_to_new_World ...
- C语言字符串结束符“\0”
介绍 '\0'就是8位的00000000,因为字符类型中并没有对应的这个字符,所以这么写.'\0'就是 字符串结束标志. '\0'是转译字符,意思是告诉编译器,这不是字符0,而是空字符.空字符\0对应 ...