题解-CF429C Guess the Tree
题面
给一个长度为 \(n\) 的数组 \(a_i\),问是否有一棵树,每个节点要么是叶子要么至少有两个儿子,而且 \(i\) 号点的子树大小是 \(a_i\)。
数据范围:\(1\le n\le 24\)。
题解
发现 \(n\) 很小,想到可以状压。
设叶子节点有 \(ln\) 个,所以中间节点有 \(mn=n-ln\) 个。
由于“每个节点要么是叶子要么至少有两个儿子”,所以 \(ln\ge\lceil\frac n2\rceil\),\(mn\le n-\lceil\frac n2\rceil \le 11\)。
所以可以先特判 \(2mn\ge n\) 的情况答案为 NO。
然后剩下的可以 dp,设 \(f_{t,s,i}\):
\(t\) 表示是一棵森林还是一个子树(为了对付“每个节点要么是叶子要么至少有两个儿子”,如果是子树 \(t=0\),否则 \(t=1\))。
\(s\) 表示包含的中间节点集合,\(s< 2^{mn}\le 2048\)。
\(i\) 表示包含的叶子节点个树,因为叶子节点都是一样的,所以这样可以优化状压。
值表示是否存在这样的森林,如果存在 \(=1\),否则 \(=0\)。
考虑怎么转移:
一棵森林(子树)和另一棵森林(子树)合并成新的森林。
一棵森林上面加一个 \(a=\) 森林大小 \(+1\) 的节点成为一棵子树(怎么求一棵森林的大小?其实就是 \({\rm popcount}(s)+i\) 啦)。
然后就剩初始化的问题了,因为 \(i\) 这维就像一个背包,而且因为 \(s\) 这一维保证不会有重点,所以可以在 dp 中用无限背包的方式,这样就只需要初始化 \(f_{0,0,1}=1\) 了。
时间复杂度 \(\Theta(ln^2 3^{mn})\),细节看代码。
代码
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair((a),(b))
#define x first
#define y second
#define bg begin()
#define ed end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
#define R(i,a,b) for(int i=(a),i##E=(b);i<i##E;i++)
#define L(i,a,b) for(int i=(b)-1,i##E=(a)-1;i>i##E;i--)
const int iinf=0x3f3f3f3f;
const ll linf=0x3f3f3f3f3f3f3f3f;
//Data
const int N=24,mN=11;
int n,sn,ln,mn,a[N],b[1<<mN];
int f[2][1<<mN][N+1]; // 森林还是子树,中间节点集,叶子节点数
bool get(int s,int i){ // 返回 f[1][s][i] 的值
for(int su=s;su;su=s&(su-1))if(!(su&(s^su)))R(j,0,i+1)
if((f[0][su][j]||f[1][su][j])&&(f[0][s^su][i-j]||f[1][s^su][i-j])) return true;
R(j,0,i+1)if((f[0][0][j]||f[1][0][j])&&(f[0][s][i-j]||f[1][s][i-j])) return true; // 因为 su!=0,补上循环中缺少的 su=0
return false;
}
//Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n; R(i,0,n) cin>>a[i]; sort(a,a+n,greater<int>());
R(i,0,n)if(a[i]>1) mn++; ln=n-mn,sn=1<<mn,sort(a,a+mn);
if(mn*2>=n) cout<<"NO\n",exit(0);
R(i,1,sn) b[i]=b[i>>1]+(i&1);
f[0][0][1]=true;
R(s,0,sn)R(i,0,ln+1)if(get(s,i)){
f[1][s][i]=true;
R(t,0,mn)if(!(s&(1<<t))&&a[t]==b[s]+i+1) // 加新的 a= 森林大小+1 的节点形成子树
f[0][s^(1<<t)][i]=true;
}
if(f[0][sn-1][ln]) cout<<"YES\n";
else cout<<"NO\n";
return 0;
}
祝大家学习愉快!
题解-CF429C Guess the Tree的更多相关文章
- 题解:CF593D Happy Tree Party
题解:CF593D Happy Tree Party Description Bogdan has a birthday today and mom gave him a tree consistin ...
- 题解-AtCoder Code-Festival2017 Final-J Tree MST
Problem \(\mathrm{Code~Festival~2017~Final~J}\) 题意概要:一棵 \(n\) 个节点有点权边权的树.构建一张完全图,对于任意一对点 \((x,y)\),连 ...
- PAT甲题题解-1110. Complete Binary Tree (25)-(判断是否为完全二叉树)
题意:判断一个节点为n的二叉树是否为完全二叉树.Yes输出完全二叉树的最后一个节点,No输出根节点. 建树,然后分别将该树与节点树为n的二叉树相比较,统计对应的节点个数,如果为n,则为完全二叉树,否则 ...
- [LeetCode 题解]: Validate Binary Search Tree
Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...
- leetcode题解:Construct Binary Tree from Inorder and Postorder Traversal(根据中序和后序遍历构造二叉树)
题目: Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume ...
- 题解 CF383C 【Propagating tree】
这道题明明没有省选难度啊,为什么就成紫题了QAQ 另:在CF上A了但是洛谷Remote Judge玄学爆零. 思路是DFS序+线段树. 首先这道题直观上可以对于每一次修改用DFS暴力O(n),然后对于 ...
- 题解 [CF916E] Jamie and Tree
题面 解析 这题考试时刚了四个小时. 结果还是爆零了 主要就是因为\(lca\)找伪了. 我们先考虑没有操作1,那就是裸的线段树. 在换了根以后,主要就是\(lca\)不好找(分类讨论伪了). 我们将 ...
- 题解 【HEOI2016】tree树
题面 解析 其实这题可以考虑离线做法,用并查集解决. 因为仔细想,添加标记并不方便, 但如果用并查集记录下祖先, 再一一删除,就会方便很多. 先把每次操作记录下来, 同时记录下每个点被标记的次数(因为 ...
- 题解-hzy loves segment tree I
Problem 题目概要:给定一棵 \(n\) 个节点的树,点有点权,进行 \(m\) 次路径取\(\max\)的操作,最后统一输出点权 \(n\leq 10^5,m\leq 5\times 10^6 ...
随机推荐
- Netlink 内核实现分析 2
netlink 应用层如何创建socket 应用层通过socket()系统调用创建Netlink套接字,socket系统调用的第一个参数可以是AF_NETLINK或PF_NETLINK(在Linux系 ...
- bss、弱符号强符号、common块、未初始化的全局变量------程序员的自我修养-链接装载与库
- TCP回射客户服务器模型(01 socket bind listen accept connect)
socket函数(安装电话机)头文件:#include<sys/socket.h> int socket(int family, int type, int protocol); //返 ...
- Linux 笔记1
linux netstat -an | grep 8081 查看端口进程 window netstat -ano|findstr "1433" taskkill -pid ** - ...
- win10,ubuntu时间不对问题
sudo apt-get install ntpdate sudo ntpdate time.windows.com # ntp2.aliyun.com 然后将时间更新到硬件上: sud ...
- YH高校集中用电管理网上查询系统POST注入漏洞
1.burpsuite 抓包保存为1.txt POST /apartsearch.asp HTTP/1.1 Host: 2*0.86.2**.69 User-Agent: Mozilla/5.0 (W ...
- 企业级工作流解决方案(八)--微服务Tcp消息传输模型之服务端处理
服务端启动 服务端启动主要做几件事情,1. 从配置文件读取服务配置(主要是服务监听端口和编解码配置),2. 注册编解码器工厂,3. 启动dotnetty监听端口,4. 读取配置文件,解析全局消息处理模 ...
- jenkins 中邮件发送
1.安装插件 jenkins中安装邮件插件,选择Email Extension 2.开启smtp服务,每个客户端的设置不一样,下图是qq邮箱,仅供参考 3.设置邮件服务 3.1系统设置 3.2 在任务 ...
- C#6,C#7,V#8,C#9 的新特性总结
看了一下,下图的所有我都有用过,感觉越高的版本越好用. C# 6.0 特性 C# 7.0 Vs2017 C# 8.0 .net core 3.0+ C#9.0 .net5 C#的各种语法糖, ...
- NOIP2020 游记
为了防止被禁赛三年,这里说明一下,本篇游记是提前开坑的. 10.9 上午模拟赛,下午初赛改成了全天初赛. 但还是想了会儿题,写了两道水题找找信心吧,毕竟前几天挂分挺严重的. 机房还是挺乱的,甚至连自己 ...