题解-CF1139D Steps to One
题面
一个数列,每次随机选一个 \([1,m]\) 之间的数加在数列末尾,数列中所有数的 \(\gcd=1\) 时停止,求期望长度 \(\bmod 10^9+7\)。
数据范围:\(1\le m\le 10^5\)。
蒟蒻语
这题的非 dp 做法讲得太玄了而且写题解的人貌似不屑于解释,于是蒟蒻来写一篇。
(其实是 ubuntu 剪贴板炸了没得记录题目了只好写题解了)。
蒟蒻解
先推一波概率期望式(\(E(x)\) 是 \(x\) 的期望,\(P(x)\) 是 \(x\) 事件的概率)。
E(len)=&\sum_{i\ge 1}P(len=i)\cdot i\\
=&\sum_{i\ge 1}P(len=i)\sum_{j=1}^i\\
=&\sum_{j\ge 1}\sum_{i\ge j}P(len=i)\\
=&\sum_{i\ge 1}P(len\ge i)\\
=&1+\sum_{i\ge 1}P(len>i)\\
\end{split}
\]
因为 \(\gcd_{i=1}^{len} a_i=1\) 就结束了,所以:
P(len>i)=&P\left(\left(\gcd_{j=1}^{i} a_i\right)>1\right)\\
=&1-P\left(\left(\gcd_{j=1}^{i} a_i\right)=1\right)\\
=&1-\frac{\sum_{a_1=1}^m\sum_{a_2=1}^m\cdots\sum_{a_i=1}^m\epsilon\left(\left(\gcd_{j=1}^{i} a_i\right)\right)}{m^i}\\
=&^{\color{#aa88cc}{(1)}}1-\frac{\sum_{a_1=1}^m\sum_{a_2=1}^m\cdots\sum_{a_i=1}^m\sum_{d|\left(\gcd_{j=1}^{i} a_i\right)}\mu(d)}{m^i}\\
=&1-\frac{\sum_{d=1}^m\mu(d)\sum_{a_1=1}^m[d|a_1]\sum_{a_2=1}^m[d|a_2]\cdots\sum_{a_i=1}^m[d|a_i]}{m^i}\\
=&1-\frac{\sum_{d=1}^m\mu(d)\left(\lfloor\frac{m}{d}\rfloor\right)^i}{m^i}\\
=&^{\color{#eeaa22}{(2)}}-\frac{\sum_{d=2}^m\mu(d)\left(\lfloor\frac{m}{d}\rfloor\right)^i}{m^i}\\
\end{split}
\]
\(\color{#aa88cc}{(1)}\) 就是一个莫反,\(\color{#eeaa22}{(2)}\) 就是把 \(d=1\) 的值和 \(1\) 抵消掉。
带回上式:
E(len)=&1+\sum_{i\ge 1}P(len>i)\\
=&1-\sum_{i\ge 1}\frac{\sum_{d=2}^m\mu(d)\left(\lfloor\frac{m}{d}\rfloor\right)^i}{m^i}\\
=&1-\sum_{i\ge 1}\frac{1}{m^i}\sum_{d=2}^m\mu(d)\left(\lfloor\frac{m}{d}\rfloor\right)^i\\
=&1-\sum_{d=2}^m\mu(d)\sum_{i\ge 1}\left(\frac{\lfloor\frac{m}{d}\rfloor}{m}\right)^i\\
=&^{\color{#ff2211}{(3)}}1-\sum_{d=2}^m\mu(d)\frac{\lfloor\frac{m}{d}\rfloor}{m-\lfloor\frac{m}{d}\rfloor}\\
\end{split}
\]
\(\color{#ff2211}{(3)}\) 是无穷等比数列求值:
sx=x^2+x^3+x^4+\cdots\\
s-sx=x\\
s=\frac{x}{1-x}\\
\]
然后就可以筛个 \(\mu(i)\) 就可以 \(\Theta(m)\) 地算了,当然您可以杜教到 \(\Theta(m^{\frac 23})\),但是那么秀有什么意思呢……
代码
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair((a),(b))
#define x first
#define y second
#define be(a) (a).begin()
#define en(a) (a).end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
#define R(i,a,b) for(int i=(a),I=(b);i<I;i++)
#define L(i,a,b) for(int i=(a),I=(b);i>I;i--)
const int iinf=0x3f3f3f3f;
const ll linf=0x3f3f3f3f3f3f3f3f;
//Data
const int mod=1e9+7;
//Sieve
struct sieve{
int n;
vector<bool> np;
vector<int> prime,mu,inv;
void Sieve(){
np[1]=true,mu[1]=1;
R(i,2,n){
if(!np[i]) prime.pb(i),mu[i]=-1;
for(int p:prime){
if(!(i*p<n)) break;
np[i*p]=true;
if(i%p==0){mu[i*p]=0;break;}
mu[i*p]=mu[i]*mu[p];
}
}
inv[1]=1;
R(i,2,n) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
sieve(int _n){
n=_n,np.assign(n,false),inv.resize(n);
prime.clear(),mu.resize(n),Sieve();
}
};
//Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
int n; cin>>n;
sieve math(n+1);
int ans=1;
R(i,2,n+1) (ans+=mod-1ll*(mod+math.mu[i])%mod
*(n/i)%mod*math.inv[n-n/i]%mod)%=mod;
cout<<ans<<'\n';
return 0;
}
祝大家学习愉快!
题解-CF1139D Steps to One的更多相关文章
- CF1139D Steps to One 题解【莫比乌斯反演】【枚举】【DP】
反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant ...
- CF1139D Steps to One
题目链接:洛谷 这个公式可真是个好东西.(哪位大佬知道它叫什么名字的?) 如果$X$恒$\geq 0$,那么 $$E[X]=\int_0^{+\infty}P(X>t)dt$$ 呸,我什么都没写 ...
- cf1139D. Steps to One(dp)
题意 题目链接 从\([1, M]\)中随机选数,问使得所有数gcd=1的期望步数 Sol 一个很显然的思路是设\(f[i]\)表示当前数为\(i\),期望的操作轮数,转移的时候直接枚举gcd \(f ...
- CF1139D Steps to One(DP,莫比乌斯反演,质因数分解)
stm这是div2的D题……我要对不住我这个紫名了…… 题目链接:CF原网 洛谷 题目大意:有个一开始为空的序列.每次操作会往序列最后加一个 $1$ 到 $m$ 的随机整数.当整个序列的 $\gcd ...
- CF1139D Steps to One (莫比乌斯反演 期望dp)
\[ f[1] = 0 \] \[ f[i] = 1 + \frac{1}{m} \sum_{j = 1} ^ n f[gcd(i, j)] \ \ \ \ \ \ (i != 1) \] 然后发现后 ...
- 【期望dp 质因数分解】cf1139D. Steps to One
有一种组合方向的考虑有没有dalao肯高抬啊? 题目大意 有一个初始为空的数组$a$,按照以下的流程进行操作: 在$1\cdots m$中等概率选出一个数$x$并添加到$a$的末尾 如果$a$中所有元 ...
- 【CF1139D】Steps to One(动态规划)
[CF1139D]Steps to One(动态规划) 题面 CF 你有一个数组,每次随机加入一个\([1,n]\)的数,当所有数\(gcd\)为\(1\)时停止,求数组长度的期望. 题解 设\(f[ ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 【题解】【数组】【查找】【Leetcode】Search in Rotated Sorted Array
Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...
随机推荐
- netfilter 的扩展功能 helper tftp-nat
/* 需要对conntrack进行功能扩展的协议,会初始化一个struct nf_conntrack_helper 实例,把该实例注册到Netfilter中管理的全局哈希表中. 查找helper使用的 ...
- tcp 保活定时器分析 & Fin_WAIT_2 定时器
tcp keepalive定时器 http server 和client端需要防止"僵死"链接过多!也就是建立了tcp链接,但是没有报文交互, 或者client 由于主机突然掉电! ...
- kernel——Makefile, head.S ...
在Makefile中找到的重要信息: (1)连接脚本 通过连接脚本,知道的信息: (1)入口符号 stext (2)入口连接地址 0xC0000000 + 0x00008000 根据入口符号,可以找到 ...
- pycharm远程编译
1. 按照 https://www.cnblogs.com/xiongmao-cpp/p/7856596.html 完成配置 2. 使用步骤: (1)在本地新建代码文件或工程 (2)编写代码,完成后若 ...
- 为什么关不掉所有的OSD
前言 碰到一个cepher问了一个问题: 为什么我的OSD关闭到最后有92个OSD无法关闭,总共的OSD有300个左右 想起来在很久以前帮人处理过一次问题,当时环境是遇上了一个BUG,需要升级到新版本 ...
- diamond收集插件的自定义
diamond是与graphite配合使用的一个数据收集的软件,关于这个配置的资料很多,使用起来也比较简单,详细的安装和配置会在后面的关于整套监控系统的文章里面写到,本篇是专门讲解怎么自定义这个数据收 ...
- 测试_QTP使用
1.Qtp是什么? QTP是Quick Test Professional的简称,是一种自动测试工具.使用QTP的目的是想用它来执行重复的自动化测试,主要是用于回归测试和测试同一软件的新版本.(百度百 ...
- springboot同一项目部署多实例
添加 -Dserver.port=xxxx 将配置文件放在nacos注册中心时,要记得在启动第二个实例记得把原来端口注释掉,如果配置文件在本地就不必注释掉了
- 这次齐了!Java面向对象、类的定义、对象的使用,全部帮你搞定
概述 Java语言是一种面向对象的程序设计语言,而面向对象思想是一种程序设计思想,我们在面向对象思想的指引下, 使用Java语言去设计.开发计算机程序. 这里的对象泛指现实中一切事物,每种事物都具备自 ...
- 面试官:小伙子,说一说Java多线程有哪些创建方式吧
第一种 继承Thread类 自定义类,继承Thread类,并重写run()方法. class MyThread1 extends Thread { @Override public void run( ...