Codeforces Edu Round 52 A-E
A. Vasya and Chocolate
模拟题。数据会爆\(int\),要开\(long\) \(long\)
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long LL;
int main(){
int T; scanf("%d", &T);
while(T--){
LL s, a, b, c;
scanf("%lld%lld%lld%lld", &s, &a, &b, &c);
LL buy = s / c, free = buy / a * b;
printf("%lld\n", buy + free);
}
return 0;
}
B. Vasya and Isolated Vertices
考虑最小时,两两连边,答案为\(max(n - 2 * m, 0)\)
考虑最大时,除了\(m\)为\(1或0\)特判以外,每次尝试用最多的边拓展一个点为不孤立的,则可以放\(now - 1\)条边连向之前所有的边。
#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
typedef long long LL;
LL n, m;
int main(){
cin >> n >> m;
cout << max(n - 2 * m, 0ll) << " ";
if(m == 0) printf("%lld\n", n);
else if(m == 1) printf("%lld\n", n - 2);
else{
int now = 2;
while(m - now + 1 > 0 && now < n) m -= (now - 1), now++;
printf("%lld\n", n - now);
}
return 0;
}
C. Make It Equal
我太弱了,只想到了\(O(nlogn)\)的做法...就是用树状数组维护前缀和,就能用\(O(logn)\)的时间计算出代价,然后弄一个指针从大往小搜就可以了...
#include <cstdio>
#include <iostream>
#include <cmath>
#include <limits.h>
typedef long long LL;
using namespace std;
const int N = 200010;
int n, k, a[N], cnt[N], ans = 0, maxn = -1, minn = INT_MAX;
LL c[N];
void add(int x, LL k){
for(; x <= maxn; x += x & -x) c[x] += k;
}
LL ask(int x){
LL res = 0;
for(; x; x -= x & -x) res += c[x];
return res;
}
LL inline get(int x){
return ask(maxn) - ask(x - 1);
}
int main(){
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; i++)
scanf("%d", a + i), cnt[a[i]]++, maxn = max(maxn, a[i]), minn = min(minn, a[i]);
for(int i = maxn; i >= 1; i--)
add(i, (LL)cnt[i] * i);
for(int i = maxn; i >= 1; i--)
cnt[i] += cnt[i + 1];
int i = maxn - 1;
while(i >= minn){
ans++;
while(i - 1 >= minn && get(i) - (LL)(i - 1) * cnt[i] <= k) i--;
add(i, (LL)i * (cnt[i + 1]) - get(i + 1));
i--;
}
printf("%d\n", ans);
return 0;
}
其实可以在指针从上往下跳的过程中处理后缀和,所以可以用\(O(n)\)的时间解决辣:
#include <cstdio>
#include <iostream>
#include <cmath>
#include <limits.h>
typedef long long LL;
using namespace std;
const int N = 200010;
int n, k, a[N], cnt[N], po[N], ans = 0, maxn = -1, minn = INT_MAX;
LL c[N];
int main(){
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; i++)
scanf("%d", a + i), po[a[i]]++, cnt[a[i]]++, maxn = max(maxn, a[i]), minn = min(minn, a[i]);
for(int i = maxn; i >= 1; i--)
cnt[i] += cnt[i + 1];
int i = maxn - 1;
c[maxn] = (LL)maxn * po[maxn];
while(i >= minn){
ans++;
c[i] = c[i + 1] + (LL)i * po[i];
while(i - 1 >= minn && c[i] - (LL)(i - 1) * cnt[i] <= k)
i--, c[i] = c[i + 1] + (LL)i * po[i];;
c[i] += (LL)i * (cnt[i + 1]) - c[i + 1];
i--;
}
printf("%d\n", ans);
return 0;
}
D. Three Pieces
\(pair<int, int>\)自带比较函数,所以省了不少功夫。写了一个优先队列\(bfs\)就过惹...
一共会有$3 *N ^ 4 $个状态,每次状态扩展最多要扩展\(4 * N\)级别,其实还会少。
总共复杂度为\(O(12 * N ^ 5)\),不会\(TLE\)。
#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
using namespace std;
typedef pair<int, int> PII;
const int N = 15;
int n, a[N][N];
PII num[N * N];
//0: 车、1: 马: 2、象
int dx[3][8] = {
{1, -1, 0, 0},
{1, 1, -1, -1, -2, -2, 2, 2},
{1, 1, -1, -1},
};
int dy[3][8] = {
{0, 0, 1, -1},
{2, -2, 2, -2, 1, -1, 1, -1},
{1, -1, 1, -1},
};
int size[3] = {4, 8, 4};
int ne[3] = {N, 1, N};
PII step[N][N][N * N][3];
struct Node{
int x, y, k, m, t, c;
};
bool operator < (const Node &x, const Node &y){
return x.t == y.t ? x.c > y.c : x.t > y.t;
}
bool inline check(int x, int y){
return x >= 1 && x <= n && y >= 1 && y <= n;
}
PII bfs(){
priority_queue<Node> q;
for(int i = 0; i < 3; i++){
q.push((Node){ num[1].first, num[1].second, 1, i, 0, 0});
step[num[1].first][num[1].second][0][i] = make_pair(0, 0);
}
while(!q.empty()){
Node u = q.top(); q.pop();
if(u.k >= n * n){
return make_pair(u.t, u.c);
}
for(int i = 0; i < size[u.m]; i++){
for(int j = 1; j <= ne[u.m]; j++){
int nx = u.x + dx[u.m][i] * j, ny = u.y + dy[u.m][i] * j;
int nm = u.m, nt = u.t + 1, nc = u.c;
int nk = (num[u.k + 1] == make_pair(nx, ny)) ? u.k + 1 : u.k;
PII now = make_pair(nt, nc);
if(!check(nx, ny)) break;
if(now < step[nx][ny][nk][nm]){
step[nx][ny][nk][nm] = now;
q.push((Node){nx, ny, nk, nm, nt, nc});
}
}
}
for(int i = 0; i < 3; i++){
if(i == u.m) continue;
int nx = u.x, ny = u.y;
int nm = i, nt = u.t + 1, nc = u.c + 1;
int nk = u.k;
PII now = make_pair(nt, nc);
if(!check(nx, ny)) break;
if(now < step[nx][ny][nk][nm]){
step[nx][ny][nk][nm] = now;
q.push((Node){nx, ny, nk, nm, nt, nc});
}
}
}
return make_pair(-1, -1);
}
int main(){
memset(step, 0x3f, sizeof step);
scanf("%d", &n);
ne[0] = ne[2] = n;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
scanf("%d", &a[i][j]), num[a[i][j]] = make_pair(i, j);
PII res = bfs();
printf("%d %d\n", res.first, res.second);
return 0;
}
E. Side Transmutations
组合数问题,我肯定是不会的...
设\(A\)为字符集合的长度。
对于每一段 $ [b_{i - 1} + 1,b_i] $ $ (1 <= i <= m)$
设这一段的长度\(len = b[i] - (b[i - 1] + 1) + 1 = b[i] - b[i - 1]\)
它有$A ^ {len} $种不同的选择方案:
- 翻过去不同,那么对应过去就有\(A ^ {len} - 1\) 种方案(不包括翻过去相同那种),由于可能算上等价操作,他俩算一个,所以它的贡献为 \(\frac{A ^ {len} * (A ^ {len} - 1)}{2}\)
- 翻过去相同,每种方案对应过去式唯一的,所以为\(A ^ {len}\)。
这两种方案相加再\(*\)入\(ans\)中即可。
对于\([b_m + 1, n - b_m]\)这段,选不选都不会造成重复,对答案的贡献是:
\(A ^ {n - b_m - (b _m + 1) + 1} = A ^ {n - 2 * b_m }\)
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long LL;
const int MOD = 998244353;
const int N = 200010;
int n, m, A, b[N];
int power(int a, int b){
int res = 1;
while(b){
if(b & 1) res = (LL)res * a % MOD;
a = (LL)a * a % MOD;
b >>= 1;
}
return res;
}
int main(){
cin >> n >> m >> A;
for(int i = 1; i <= m; i++) scanf("%d", b + i);
LL ans = 1;
for(int i = 1; i <= m; i++){
LL now = power(A, b[i] - b[i - 1]);
ans = (ans * ((now + now * (now - 1) / 2) % MOD)) % MOD;
}
ans = (ans * power(A, (n - 2 * b[m]))) % MOD;
cout << ans;
return 0;
}
Codeforces Edu Round 52 A-E的更多相关文章
- Codeforces Beta Round #52 (Div. 2)
Codeforces Beta Round #52 (Div. 2) http://codeforces.com/contest/56 A #include<bits/stdc++.h> ...
- [CodeForces]Educational Round 52
幸好我没有打这场,我VP的时候在C题就卡死了,我果然还是太菜了. A Vasya and Chocolate 题意:一个巧克力\(c\)元,买\(a\)赠\(b\),一共有\(n\)元,问能买几个巧克 ...
- Codeforces Beta Round #80 (Div. 2 Only)【ABCD】
Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...
- CH Round #52 还教室[线段树 方差]
还教室 CH Round #52 - Thinking Bear #1 (NOIP模拟赛) [引子]还记得 NOIP 2012 提高组 Day2 中的借教室吗?时光飞逝,光阴荏苒,两年过去了,曾经借教 ...
- Codeforces Beta Round #62 题解【ABCD】
Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...
- Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】
Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...
- Codeforces Beta Round #13 C. Sequence (DP)
题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...
- CodeForces Global Round 1
CodeForces Global Round 1 CF新的比赛呢(虽然没啥区别)!这种报名的人多的比赛涨分是真的快.... 所以就写下题解吧. A. Parity 太简单了,随便模拟一下就完了. B ...
- Codeforces Global Round 1 - D. Jongmah(动态规划)
Problem Codeforces Global Round 1 - D. Jongmah Time Limit: 3000 mSec Problem Description Input Out ...
随机推荐
- 加解密 C语言实现
1.加密的基本原理 加密分为对称加密和非对称加密,对称加密就是加密方和解密放用同一个密钥. 加密是分组加密,即将明文数据分成多个密钥大小的块,依次和密钥运算,输出密文. padding,由于加密需要分 ...
- simple-rpc
RPC的实现原理 正如上一讲所说,RPC主要是为了解决的两个问题: 解决分布式系统中,服务之间的调用问题. 远程调用时,要能够像本地调用一样方便,让调用者感知不到远程调用的逻辑. 还是以计算器Calc ...
- 从 Webpack 到 Snowpack, 编译速度提升十倍以上——TRPG Engine迁移小记
动机 TRPG Engine经过长久以来的迭代,项目已经显得非常臃肿了.数分钟的全量编译, 每次按下保存都会触发一次10s到1m不等的增量编译让我苦不堪言, 庞大的依赖使其每一次编译都会涉及很多文件和 ...
- 安装Ubuntu16.04系统后分辨率底的问题
问题描述:安装Ubuntu系统后有可能会遇到分辨率很低的问题,别着急,这是一个小问题. 解决方案:修改/etc/default/grub,打开终端用命令:sudo gedit /etc/default ...
- FL Studio杂项设置页讲解(上)
今天我们来看一下FL Studio通道设置窗口中的杂项设置页面.该页面存在于FL Studio绝大多数的通道中,我们可以通过它来设置一些发生器或者第三方插件的参数,接下来就让我们一起来学习下这些参数的 ...
- FL studio系列教程(十六):FL Studio查看菜单讲解
FL Studio中每个窗口的显示.隐藏和布局命令都在查看菜单中.其中它被分为窗口.布局和浏览器3个部分,各项名称都有其单独的作用.窗口部分主要是软件的显示的一些菜单这里就不详细讲解了,接下来我们重点 ...
- 和功能相近的虚拟机软件相比,CrossOver的产品优势有哪些?
很多用户其实并不喜欢虚拟机软件,他们只是想用回熟悉的Windows应用程序,因为苹果系统与许多软件并不兼容.无奈之下,他们只能安装虚拟机软件.可是虚拟机软件大多比较笨重并且也相对复杂一些,在后期维护上 ...
- Java IDEA 根据mybatis-generator-core自动生成代码支持sqlserver获取备注(二)
mybatis generator代码生成虽然好用,但是好像不支持sqlserver获取备注信息,这里我主要分享mybatis generator改写后支持sqlserver获取备注信息,mysql以 ...
- 聊聊 ClassLoader 是如何查找资源的
ClassLoader作用 classloader这个写业务代码的童鞋们,应该很少用到,但是写框架的应该很熟悉.这个类负责Java底层的类的加载和查找,简单滴说Java 的所有类都是由它负责将clas ...
- Java基础教程——Date类和Calendar类
Date类和Calendar类都是关于日期的类,都在java.util包中,使用时需要import. Date java.util.Date类的对象用来表示时间和日期,用得最多的是获取系统当前日期和时 ...