HDU 3691 Nubulsa Expo(全局最小割Stoer-Wagner算法)
As you know, the Expo garden is made up of many museums of different countries. In the Expo garden, there are a lot of bi-directional roads connecting those museums, and all museums are directly or indirectly connected with others. Each road has a tourist capacity which means the maximum number of people who can pass the road per second.
Because Nubulsa is not a rich country and the ticket checking machine is very expensive, the government decides that there must be only one entrance and one exit. The president has already chosen a museum as the entrance of the whole Expo garden, and it’s the Expo chief directory Wuzula’s job to choose a museum as the exit.
Wuzula has been to the Shanghai Expo, and he was frightened by the tremendous “people mountain people sea” there. He wants to control the number of people in his Expo garden. So Wuzula wants to find a suitable museum as the exit so that the “max tourists flow” of the Expo garden is the minimum. If the “max tourist flow” is W, it means that when the Expo garden comes to “stable status”, the number of tourists who enter the entrance per second is at most W. When the Expo garden is in “stable status”, it means that the number of people in the Expo garden remains unchanged.
Because there are only some posters in every museum, so Wuzula assume that all tourists just keep walking and even when they come to a museum, they just walk through, never stay.
For each test case:
The first line contains three integers N, M and S, representing the number of the museums, the number of roads and the No. of the museum which is chosen as the entrance (all museums are numbered from 1 to N). For example, 5 5 1 means that there are 5 museums and 5 roads connecting them, and the No. 1 museum is the entrance.
The next M lines describe the roads. Each line contains three integers X, Y and K, representing the road connects museum X with museum Y directly and its tourist capacity is K.
Please note:
1<N<=300, 0<M<=50000, 0<S,X,Y<=N, 0<K<=1000000
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long LL; const int MAXN = ; LL mat[MAXN][MAXN];
LL weight[MAXN];
bool del[MAXN], vis[MAXN];;
int n, m, st; void init() {
memset(mat, , sizeof(mat));
memset(del, , sizeof(del));
} LL StoerWagner(int &s, int &t, int cnt) {
memset(weight, , sizeof(weight));
memset(vis, , sizeof(vis));
for(int i = ; i <= n; ++i)
if(!del[i]) {t = i; break; }
while(--cnt) {
vis[s = t] = true;
for(int i = ; i <= n; ++i) if(!del[i] && !vis[i]) {
weight[i] += mat[s][i];
}
t = ;
for(int i = ; i <= n; ++i) if(!del[i] && !vis[i]) {
if(weight[i] >= weight[t]) t = i;
}
}
return weight[t];
} void merge(int s, int t) {
for(int i = ; i <= n; ++i) {
mat[s][i] += mat[t][i];
mat[i][s] += mat[i][t];
}
del[t] = true;
} LL solve() {
LL ret = -;
int s, t;
for(int i = n; i > ; --i) {
if(ret == -) ret = StoerWagner(s, t, i);
else ret = min(ret, StoerWagner(s, t, i));
merge(s, t);
}
return ret;
} int main() {
while(scanf("%d%d%d", &n, &m, &st) != EOF) {
if(n == && m == && st == ) break;
init();
while(m--) {
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
mat[x][y] += z;
mat[y][x] += z;
}
cout<<solve()<<endl;
}
}
HDU 3691 Nubulsa Expo(全局最小割Stoer-Wagner算法)的更多相关文章
- HDU 3691 Nubulsa Expo(全局最小割)
Problem DescriptionYou may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa i ...
- UVALive 5099 Nubulsa Expo 全局最小割问题
B - Nubulsa Expo Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit S ...
- HDU 3691 Nubulsa Expo
无向图的最小割.套了个模板. #include<iostream> #include<cstdio> #include<cstring> #include<a ...
- UVALive 5099 Nubulsa Expo 全球最小割 非网络流量 n^3
主题链接:点击打开链接 意甲冠军: 给定n个点m条无向边 源点S 以下m行给出无向边以及边的容量. 问: 找一个汇点,使得图的最大流最小. 输出最小的流量. 思路: 最大流=最小割. 所以题意就是找全 ...
- 求全局最小割(SW算法)
hdu3002 King of Destruction Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- 图的全局最小割的Stoer-Wagner算法及例题
Stoer-Wagner算法基本思想:如果能求出图中某两个顶点之间的最小割,更新答案后合并这两个顶点继续求最小割,到最后就得到答案. 算法步骤: --------------------------- ...
- 全局最小割StoerWagner算法详解
前言 StoerWagner算法是一个找出无向图全局最小割的算法,本文需要读者有一定的图论基础. 本文大部分内容与词汇来自参考文献(英文,需***),用兴趣的可以去读一下文献. 概念 无向图的割:有无 ...
- poj 2914(stoer_wanger算法求全局最小割)
题目链接:http://poj.org/problem?id=2914 思路:算法基于这样一个定理:对于任意s, t V ∈ ,全局最小割或者等于原图的s-t 最小割,或者等于将原图进行 Cont ...
- poj2914 Minimum Cut 全局最小割模板题
Minimum Cut Time Limit: 10000MS Memory Limit: 65536K Total Submissions: 8324 Accepted: 3488 Case ...
随机推荐
- Mongo对内嵌文档的CRUD
{ "_id" : ObjectId("5706032acd0a6194868cf53e"), "list" : { "age&q ...
- 點擊按鈕后彈出新頁面導致原頁面CSS失效
比方说在页面里面有个LinkButton,要点击以后要打开新窗口,而且新窗口的URL是根据用户选择结果动态产生的.LinkButton的代码这样写: protected void Service ...
- .Net平台下ActiveMQ入门实例
1.ActiveMQ简介 先分析这么一个场景:当我们在网站上购物时,必须经过,下订单.发票创建.付款处理.订单履行.航运等.但是,当用户下单后,立即跳转到“感谢那您的订单” 页面.不仅如此,若果没有延 ...
- ubuntu下hadoop环境配置
软件环境: 虚拟机:VMware Workstation 10 操作系统:ubuntu-12.04-desktop-amd64 JAVA版本:jdk-7u55-linux-x64 Hadoop版本:h ...
- Wordpress页面判断
is_single() 判断是否是文章页面 is_single('2')/is_single(2)判断是否是具体文章(id=2)的页面 is_single('')判断是否是具体文章(标题为Beef S ...
- Maven实战(七)settings.xml相关配置
一.简介 settings.xml对于maven来说相当于全局性的配置,用于所有的项目,当Maven运行过程中的各种配置,例如pom.xml,不想绑定到一个固定的project或者要分配给用户时,我们 ...
- ASP.NET中身份验证
ASP.NET中身份验证有三种方式:Windows.Forms和Passport. 1.Windows验证,基于窗体验证,需要每个页面写上验证身份代码,相对灵活,但操作过于复杂: 2.Passport ...
- c#中DropDownList控件绑定枚举数据
c# asp.net 中DropDownList控件绑定枚举数据 1.枚举(enum)代码: private enum heros { 德玛 = , 皇子 = , 大头 = , 剑圣 = , } 如果 ...
- 解决调用context.Session["NAME"]时总出现Object reference not set to an instance of an object.异常的方法
if (context.Session != null) { }
- 一些Perl例程(全部手打并执行过)
#-1-变量使用,打印#!/usr/local/bin/perl$value=100+30+3+8;print("Value=",$value,"\n"); # ...