[Java 缓存] Java Cache之 Guava Cache的简单应用.
前言
今天第一次使用MarkDown的形式发博客. 准备记录一下自己对Guava Cache的认识及项目中的实际使用经验.
一: 什么是Guava
Guava工程包含了若干被Google的 Java项目广泛依赖 的核心库,例如:集合 [collections] 、缓存 [caching] 、原生类型支持 [primitives support] 、并发库 [concurrency libraries] 、通用注解 [common annotations] 、字符串处理 [string processing] 、I/O 等等。 所有这些工具每天都在被Google的工程师应用在产品服务中。
//Guava Cache的使用
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.expireAfterAccess(10, TimeUnit.MINUTES)
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) { // no checked exception
return createExpensiveGraph(key);
}
});
...
return graphs.getUnchecked(key);
二: 使用场景
当我们使用一种新工具的时候 我们总要先弄清楚它到底适用于什么样的场景.
- 你愿意消耗一些内存空间来提升速度。
- 你预料到某些键会被查询一次以上。
- 缓存中存放的数据总量不会超出内存容量。(Guava Cache是单个应用运行时的本地缓存。它不把数据存放到文件或外部服务器。如果这不符合你的需求,请尝试Memcached这类工具)
如果你的场景符合上述的每一条,Guava Cache就适合你。
三: 核心类图
四: 使用实例
前面说了这么多, 都不如如何使用来的实在. 现在直接贴出来使用的实例, 具体实现的逻辑大家可以看下源码, 这里也会有一些实际的讲解.
在pom文件中引入Guava Cache的坐标:
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
</dependency>
下面拿我们实际项目中使用的一个GuavaCache来举例:
public abstract class BaseCacheService<K,V> {
private LoadingCache<K,V> cache;
public BaseCacheService(){
cache = CacheBuilder.newBuilder()
.expireAfterWrite(30, TimeUnit.MINUTES)
.build(new CacheLoader<K, V>() {
@Override
public V load(K k) throws Exception {
return loadData(k);
}
});
}
public BaseCacheService(long duration){
cache = CacheBuilder.newBuilder()
.expireAfterWrite(duration, TimeUnit.MINUTES)
.build(new CacheLoader<K, V>() {
@Override
public V load(K k) throws Exception {
return loadData(k);
}
});
}
protected abstract V loadData(K k);
public V getCache(K param){
return cache.getUnchecked(param);
}
//更新缓存中数据
public void refresh(K k){
cache.refresh(k);
}
}
这里我是抽象出来了一个BaseCacheService, 当我们使用时则可以继承这个抽象类:
如果我们第一次请求, 那么这会执行这里面的load方法去数据库中查询相应的值, 当第二次请求时这会从缓存中直接返回了.
@Service
public class MaterialInfoCacheService extends BaseCacheService<Long, List<MaterialInfoDto>> {
@Override
protected List<MaterialInfoDto> loadData(Long key) {
//具体的查询数据库得到数据的逻辑.
return materialInfoDtos;
}
}
这里面有关于缓存的回收(expireAfterWrite), 有关于缓存的刷新(refresh)等, 这些东西会一一来介绍.
缓存的回收:
1, 基于容量的回收(size-based eviction)
如果要规定缓存项的数目不超过固定值,只需使用CacheBuilder.maximumSize(long)。缓存将尝试回收最近没有使用或总体上很少使用的缓存项。——警告:在缓存项的数目达到限定值之前,缓存就可能进行回收操作——通常来说,这种情况发生在缓存项的数目逼近限定值时。
另外,不同的缓存项有不同的“权重”(weights)——例如,如果你的缓存值,占据完全不同的内存空间,你可以使用CacheBuilder.weigher(Weigher)指定一个权重函数,并且用CacheBuilder.maximumWeight(long)指定最大总重。在权重限定场景中,除了要注意回收也是在重量逼近限定值时就进行了,还要知道重量是在缓存创建时计算的,因此要考虑重量计算的复杂度。
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.maximumWeight(100000)
.weigher(new Weigher<Key, Graph>() {
public int weigh(Key k, Graph g) {
return g.vertices().size();
}
})
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) { // no checked exception
return createExpensiveGraph(key);
}
});
2, 定时回收(Timed Eviction)
CacheBuilder提供两种定时回收的方法:
- expireAfterAccess(long, TimeUnit):缓存项在给定时间内没有被读/写访问,则回收。请注意这种缓存的回收顺序和基于大小回收一样。
- expireAfterWrite(long, TimeUnit):缓存项在给定时间内没有被写访问(创建或覆盖),则回收。如果认为缓存数据总是在固定时候后变得陈旧不可用,这种回收方式是可取的。
3, 基于引用的回收(Reference-based Eviction)
通过使用弱引用的键、或弱引用的值、或软引用的值,Guava Cache可以把缓存设置为允许垃圾回收:
- CacheBuilder.weakKeys():使用弱引用存储键。当键没有其它(强或软)引用时,缓存项可以被垃圾回收。因为垃圾回收仅依赖恒等式(),使用弱引用键的缓存用而不是equals比较键。
- CacheBuilder.weakValues():使用弱引用存储值。当值没有其它(强或软)引用时,缓存项可以被垃圾回收。因为垃圾回收仅依赖恒等式(),使用弱引用值的缓存用而不是equals比较值。
- CacheBuilder.softValues():使用软引用存储值。软引用只有在响应内存需要时,才按照全局最近最少使用的顺序回收。考虑到使用软引用的性能影响,我们通常建议使用更有性能预测性的缓存大小限定(见上文,基于容量回收)。使用软引用值的缓存同样用==而不是equals比较值。
其实这里使用最多的还是基于时间的定时回收, 其他的两种回收方式大家可以根据自己的项目而定.
缓存的显示刷新和清除:
(任何时候,你都可以显式地清除缓存项,而不是等到它被回收)
这里需要说明下刷新(refresh)和清除(invalidate)的区别:
刷新和回收不太一样。正如LoadingCache.refresh(K)所声明,刷新表示为键加载新值,这个过程可以是异步的。在刷新操作进行时,
缓存仍然可以向其他线程返回旧值,而不像回收操作,读缓存的线程必须等待新值加载完成。
如果刷新过程抛出异常,缓存将保留旧值,而异常会在记录到日志后被丢弃 .
- 刷新: Cache.refresh(K k)
- 个别清除:Cache.invalidate(key)
- 批量清除:Cache.invalidateAll(keys)
- 清除所有缓存项:Cache.invalidateAll()
三: 使用实例
这里更新下我在项目中常用的guava cache的实例. 更新于2016年12月14日.
LoadingCache<String, Map<Long, CarAttentionDTO>> cache = CacheBuilder.newBuilder()
.expireAfterAccess(30, TimeUnit.MINUTES)
.build(new CacheLoader<String, Map<Long, CarAttentionDTO>>() {
public Map<Long, CarAttentionDTO> load(String key) { // no checked exception
LOGGER.info("loading car week attention data......");
long startTime = System.currentTimeMillis();
List<String> groupBy = Lists.newArrayList();
groupBy.add("key2");
Map<String, String> where = Maps.newHashMap();
where.put("group_name", String.valueOf(CommonConstants.CounterGroup.ATTENTION));
where.put("key1", String.valueOf(CommonConstants.DataType.CAR));
Calendar cal = Calendar.getInstance();
Date dateTo = DateUtils.addDays(cal.getTime(), -1);
Date dateFrom = DateUtils.addDays(cal.getTime(), -8);
int dayTo = Integer.valueOf(DateFormatUtils.format(dateTo, "yyyyMMdd"));
int dayFrom = Integer.valueOf(DateFormatUtils.format(dateFrom, "yyyyMMdd"));
List<CountDayUvEntity> list = uvEntityDao.countByParams(groupBy, where, dayFrom, dayTo);
int multiple = configReader.getInt(CommonConstants.SystemConfigKey.ATTENTION_MULTIPLE, 53);
Map<Long, CarAttentionDTO> tempMap = Maps.newHashMap();
for (CountDayUvEntity uvEntity : list) {
CarAttentionDTO attentionDTO = new CarAttentionDTO();
attentionDTO.setCarId(Long.valueOf(uvEntity.getKey2()));
attentionDTO.setAttention(uvEntity.getCount() * multiple + RandomUtils.nextInt(0, 10));
tempMap.put(attentionDTO.getCarId(), attentionDTO);
}
LOGGER.info("load car week attention finished. useTime=" + (System.currentTimeMillis() - startTime));
return tempMap;
}
});
private Cache<String, Object> carIndexCache = CacheBuilder.newBuilder().expireAfterAccess(20, TimeUnit.MINUTES).build();
public Map<Long, Long> getCarAttentions() throws ExecutionException {
String key = "getCarAttentions";
return (Map<Long, Long>) carIndexCache.get(key, new Callable<Map<Long, Long>>() {
@Override
public Map<Long, Long> call() throws Exception {
List<CarIndexEntity> carIndexs = carIndexEntityDao.findAll(
CarIndexEntity.Fields.type.eq(CommonConstants.CarIndexStatus.ATTENTION));
Map<Long, Long> data = Maps.newHashMapWithExpectedSize(carIndexs.size());
for (CarIndexEntity carIndex : carIndexs) {
data.put(carIndex.getCarId(), carIndex.getCount());
}
return data;
}
});
}
public Map<Long, Long> getCarSales() throws ExecutionException {
String key = "getCarSales";
return (Map<Long, Long>) carIndexCache.get(key, new Callable<Map<Long, Long>>() {
@Override
public Map<Long, Long> call() throws Exception {
List<CarIndexEntity> carIndexs = carIndexEntityDao.findAll(
CarIndexEntity.Fields.type.eq(CommonConstants.CarIndexStatus.SALES));
Map<Long, Long> data = Maps.newHashMapWithExpectedSize(carIndexs.size());
for (CarIndexEntity carIndex : carIndexs) {
data.put(carIndex.getCarId(), carIndex.getCount());
}
return data;
}
});
}
其实两种情况都是一样的, 第二个是使用场景是一个service有多个方法都需要用到guava cache.
好了 知道了这些就可以在项目中直接使用了, 更多的内容请看Guava Cache官方文档(翻译版):http://ifeve.com/google-guava-cachesexplained/
[Java 缓存] Java Cache之 Guava Cache的简单应用.的更多相关文章
- [Java 缓存] Java Cache之 DCache的简单应用.
前言 上次总结了下本地缓存Guava Cache的简单应用, 这次来继续说下项目中使用的DCache的简单使用. 这里分为几部分进行总结, 1)DCache介绍; 2)DCache配置及使用; 3)使 ...
- google guava cache缓存基本使用讲解
代码地址:https://github.com/vikde/demo-guava-cache 一.简介 guava cache是google guava中的一个内存缓存模块,用于将数据缓存到JVM内存 ...
- 一个缓存使用案例:Spring Cache VS Caffeine 原生 API
最近在学习本地缓存发现,在 Spring 技术栈的开发中,既可以使用 Spring Cache 的注解形式操作缓存,也可用各种缓存方案的原生 API.那么是否 Spring 官方提供的就是最合适的方案 ...
- 自定义缓存管理器 或者 Spring -- cache
Spring Cache 缓存是实际工作中非常常用的一种提高性能的方法, 我们会在许多场景下来使用缓存. 本文通过一个简单的例子进行展开,通过对比我们原来的自定义缓存和 spring 的基于注释的 c ...
- Spring配置cache(concurrentHashMap,guava cache、redis实现)附源码
在应用程序中,数据一般是存在数据库中(磁盘介质),对于某些被频繁访问的数据,如果每次都访问数据库,不仅涉及到网络io,还受到数据库查询的影响:而目前通常会将频繁使用,并且不经常改变的数据放入缓存中,从 ...
- Guava Cache相关
官方:http://ifeve.com/google-guava-cachesexplained/ 理解:https://segmentfault.com/a/1190000007300118 项目中 ...
- Guava Cache 原理分析与最佳实践
前言 目前大部分互联网架构 Cache 已经成为了必可不少的一环.常用的方案有大家熟知的 NoSQL 数据库(Redis.Memcached),也有大量的进程内缓存比如 EhCache .Guava ...
- Java缓存
Java中要用到缓存的地方很多,首当其冲的就是持久层缓存,针对持久层谈一下: 要实现java缓存有很多种方式,最简单的无非就是static HashMap,这个显然是基于内存缓存,一个map就可以搞定 ...
- 浅谈java缓存
java中要用到缓存的地方很多,首当其冲的就是持久层缓存,针对持久层谈一下: 要实现java缓存有很多种方式,最简单的无非就是static HashMap,这个显然是基于内存缓存,一个map就可以搞定 ...
随机推荐
- NoSql数据库使用半年后在设计上面的一些心得
NoSql数据库这个概念听闻许久了,也陆续看到很多公司和产品都在使用,优缺点似乎都被分析的清清楚楚.但我心里一直存有一个疑惑,它的出现究竟是为了解决什么问题? 这个疑惑非常大,为此我看了很多分析文章, ...
- 逆天Kali带你游遍大江南北~安全之前人铺路!
0.Linux基础学习(基本指令) http://www.cnblogs.com/dunitian/p/4822807.html 1.Kali安装到移动硬盘或者U盘中~Linux系列通用方法(包括An ...
- React的使用与JSX的转换
前置技能:Chrome浏览器 一.拿糖:React的使用 React v0.14 RC 发布,主要更新项目: 两个包: React 和 React DOM DOM node refs 无状态的功能 ...
- Unity 序列化 总结
查找了 Script Serialization http://docs.unity3d.com/Manual/script-Serialization.html 自定义序列化及例子: http:// ...
- Xamarin+Prism开发详解四:简单Mac OS 虚拟机安装方法与Visual Studio for Mac 初体验
Mac OS 虚拟机安装方法 最近把自己的电脑升级了一下SSD固态硬盘,总算是有容量安装Mac 虚拟机了!经过心碎的安装探索,尝试了国内外的各种安装方法,最后在youtube上找到了一个好方法. 简单 ...
- CRL快速开发框架系列教程十二(MongoDB支持)
本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...
- 用神奇的currentColor制作简洁的颜色动画效果
先上一个兼容性总结图:老版本ie可以直接用复杂方法了,套用某表情包的话: 2016年了,做前端你还考虑兼容IE6?你这简直是自暴自弃! 好了,知道了兼容性,我们可以放心的使用了. 在CSS3中扩展了 ...
- OEL上使用yum install oracle-validated 简化主机配置工作
环境:OEL 5.7 + Oracle 10.2.0.5 RAC 如果你正在用OEL(Oracle Enterprise Linux)系统部署Oracle,那么可以使用yum安装oracle-vali ...
- 基于window7+caffe实现图像艺术风格转换style-transfer
这个是在去年微博里面非常流行的,在git_hub上的代码是https://github.com/fzliu/style-transfer 比如这是梵高的画 这是你自己的照片 然后你想生成这样 怎么实现 ...
- 屌丝giser成长记-大学篇
作为一名屌丝giser的我,刚接触gis专业是2007年的大一,好悲催,当时gis这个专业是被调剂的,我压根都不知道gis为何物,那时候gis冷门的一逼,报名这个专业的寥寥无几.记得那时候得知被调剂到 ...