前言

今天第一次使用MarkDown的形式发博客. 准备记录一下自己对Guava Cache的认识及项目中的实际使用经验.

一: 什么是Guava

Guava工程包含了若干被Google的 Java项目广泛依赖 的核心库,例如:集合 [collections] 、缓存 [caching] 、原生类型支持 [primitives support] 、并发库 [concurrency libraries] 、通用注解 [common annotations] 、字符串处理 [string processing] 、I/O 等等。 所有这些工具每天都在被Google的工程师应用在产品服务中。

//Guava Cache的使用
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.expireAfterAccess(10, TimeUnit.MINUTES)
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) { // no checked exception
return createExpensiveGraph(key);
}
}); ...
return graphs.getUnchecked(key);

二: 使用场景

当我们使用一种新工具的时候 我们总要先弄清楚它到底适用于什么样的场景.

  • 你愿意消耗一些内存空间来提升速度。
  • 你预料到某些键会被查询一次以上。
  • 缓存中存放的数据总量不会超出内存容量。(Guava Cache是单个应用运行时的本地缓存。它不把数据存放到文件或外部服务器。如果这不符合你的需求,请尝试Memcached这类工具)

如果你的场景符合上述的每一条,Guava Cache就适合你。

三: 核心类图

四: 使用实例

前面说了这么多, 都不如如何使用来的实在. 现在直接贴出来使用的实例, 具体实现的逻辑大家可以看下源码, 这里也会有一些实际的讲解.

在pom文件中引入Guava Cache的坐标:

<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
</dependency>

下面拿我们实际项目中使用的一个GuavaCache来举例:

public abstract class BaseCacheService<K,V> {
private LoadingCache<K,V> cache; public BaseCacheService(){
cache = CacheBuilder.newBuilder()
.expireAfterWrite(30, TimeUnit.MINUTES)
.build(new CacheLoader<K, V>() {
@Override
public V load(K k) throws Exception {
return loadData(k);
}
});
} public BaseCacheService(long duration){
cache = CacheBuilder.newBuilder()
.expireAfterWrite(duration, TimeUnit.MINUTES)
.build(new CacheLoader<K, V>() {
@Override
public V load(K k) throws Exception {
return loadData(k);
}
});
} protected abstract V loadData(K k); public V getCache(K param){
return cache.getUnchecked(param);
} //更新缓存中数据
public void refresh(K k){
cache.refresh(k);
}
}

这里我是抽象出来了一个BaseCacheService, 当我们使用时则可以继承这个抽象类:

如果我们第一次请求, 那么这会执行这里面的load方法去数据库中查询相应的值, 当第二次请求时这会从缓存中直接返回了.

@Service
public class MaterialInfoCacheService extends BaseCacheService<Long, List<MaterialInfoDto>> { @Override
protected List<MaterialInfoDto> loadData(Long key) {
//具体的查询数据库得到数据的逻辑. return materialInfoDtos;
}
}

这里面有关于缓存的回收(expireAfterWrite), 有关于缓存的刷新(refresh)等, 这些东西会一一来介绍.

缓存的回收:

1, 基于容量的回收(size-based eviction)

如果要规定缓存项的数目不超过固定值,只需使用CacheBuilder.maximumSize(long)。缓存将尝试回收最近没有使用或总体上很少使用的缓存项。——警告:在缓存项的数目达到限定值之前,缓存就可能进行回收操作——通常来说,这种情况发生在缓存项的数目逼近限定值时。

另外,不同的缓存项有不同的“权重”(weights)——例如,如果你的缓存值,占据完全不同的内存空间,你可以使用CacheBuilder.weigher(Weigher)指定一个权重函数,并且用CacheBuilder.maximumWeight(long)指定最大总重。在权重限定场景中,除了要注意回收也是在重量逼近限定值时就进行了,还要知道重量是在缓存创建时计算的,因此要考虑重量计算的复杂度。

LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.maximumWeight(100000)
.weigher(new Weigher<Key, Graph>() {
public int weigh(Key k, Graph g) {
return g.vertices().size();
}
})
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) { // no checked exception
return createExpensiveGraph(key);
}
});

2, 定时回收(Timed Eviction)

CacheBuilder提供两种定时回收的方法:

  • expireAfterAccess(long, TimeUnit):缓存项在给定时间内没有被读/写访问,则回收。请注意这种缓存的回收顺序和基于大小回收一样。
  • expireAfterWrite(long, TimeUnit):缓存项在给定时间内没有被写访问(创建或覆盖),则回收。如果认为缓存数据总是在固定时候后变得陈旧不可用,这种回收方式是可取的。

3, 基于引用的回收(Reference-based Eviction)

通过使用弱引用的键、或弱引用的值、或软引用的值,Guava Cache可以把缓存设置为允许垃圾回收:

  • CacheBuilder.weakKeys():使用弱引用存储键。当键没有其它(强或软)引用时,缓存项可以被垃圾回收。因为垃圾回收仅依赖恒等式(),使用弱引用键的缓存用而不是equals比较键。
  • CacheBuilder.weakValues():使用弱引用存储值。当值没有其它(强或软)引用时,缓存项可以被垃圾回收。因为垃圾回收仅依赖恒等式(),使用弱引用值的缓存用而不是equals比较值。
  • CacheBuilder.softValues():使用软引用存储值。软引用只有在响应内存需要时,才按照全局最近最少使用的顺序回收。考虑到使用软引用的性能影响,我们通常建议使用更有性能预测性的缓存大小限定(见上文,基于容量回收)。使用软引用值的缓存同样用==而不是equals比较值。

其实这里使用最多的还是基于时间的定时回收, 其他的两种回收方式大家可以根据自己的项目而定.

缓存的显示刷新和清除:

(任何时候,你都可以显式地清除缓存项,而不是等到它被回收)

这里需要说明下刷新(refresh)和清除(invalidate)的区别:

刷新和回收不太一样。正如LoadingCache.refresh(K)所声明,刷新表示为键加载新值,这个过程可以是异步的。在刷新操作进行时,

缓存仍然可以向其他线程返回旧值,而不像回收操作,读缓存的线程必须等待新值加载完成。

如果刷新过程抛出异常,缓存将保留旧值,而异常会在记录到日志后被丢弃 .

  • 刷新: Cache.refresh(K k)
  • 个别清除:Cache.invalidate(key)
  • 批量清除:Cache.invalidateAll(keys)
  • 清除所有缓存项:Cache.invalidateAll()

三: 使用实例

这里更新下我在项目中常用的guava cache的实例. 更新于2016年12月14日.

LoadingCache<String, Map<Long, CarAttentionDTO>> cache = CacheBuilder.newBuilder()
.expireAfterAccess(30, TimeUnit.MINUTES)
.build(new CacheLoader<String, Map<Long, CarAttentionDTO>>() {
public Map<Long, CarAttentionDTO> load(String key) { // no checked exception
LOGGER.info("loading car week attention data......");
long startTime = System.currentTimeMillis();
List<String> groupBy = Lists.newArrayList();
groupBy.add("key2"); Map<String, String> where = Maps.newHashMap();
where.put("group_name", String.valueOf(CommonConstants.CounterGroup.ATTENTION));
where.put("key1", String.valueOf(CommonConstants.DataType.CAR)); Calendar cal = Calendar.getInstance();
Date dateTo = DateUtils.addDays(cal.getTime(), -1);
Date dateFrom = DateUtils.addDays(cal.getTime(), -8); int dayTo = Integer.valueOf(DateFormatUtils.format(dateTo, "yyyyMMdd"));
int dayFrom = Integer.valueOf(DateFormatUtils.format(dateFrom, "yyyyMMdd"));
List<CountDayUvEntity> list = uvEntityDao.countByParams(groupBy, where, dayFrom, dayTo); int multiple = configReader.getInt(CommonConstants.SystemConfigKey.ATTENTION_MULTIPLE, 53);
Map<Long, CarAttentionDTO> tempMap = Maps.newHashMap();
for (CountDayUvEntity uvEntity : list) {
CarAttentionDTO attentionDTO = new CarAttentionDTO();
attentionDTO.setCarId(Long.valueOf(uvEntity.getKey2()));
attentionDTO.setAttention(uvEntity.getCount() * multiple + RandomUtils.nextInt(0, 10));
tempMap.put(attentionDTO.getCarId(), attentionDTO);
} LOGGER.info("load car week attention finished. useTime=" + (System.currentTimeMillis() - startTime));
return tempMap;
}
});
private Cache<String, Object> carIndexCache = CacheBuilder.newBuilder().expireAfterAccess(20, TimeUnit.MINUTES).build();

public Map<Long, Long> getCarAttentions() throws ExecutionException {
String key = "getCarAttentions";
return (Map<Long, Long>) carIndexCache.get(key, new Callable<Map<Long, Long>>() {
@Override
public Map<Long, Long> call() throws Exception {
List<CarIndexEntity> carIndexs = carIndexEntityDao.findAll(
CarIndexEntity.Fields.type.eq(CommonConstants.CarIndexStatus.ATTENTION));
Map<Long, Long> data = Maps.newHashMapWithExpectedSize(carIndexs.size());
for (CarIndexEntity carIndex : carIndexs) {
data.put(carIndex.getCarId(), carIndex.getCount());
}
return data;
}
});
} public Map<Long, Long> getCarSales() throws ExecutionException {
String key = "getCarSales";
return (Map<Long, Long>) carIndexCache.get(key, new Callable<Map<Long, Long>>() {
@Override
public Map<Long, Long> call() throws Exception {
List<CarIndexEntity> carIndexs = carIndexEntityDao.findAll(
CarIndexEntity.Fields.type.eq(CommonConstants.CarIndexStatus.SALES));
Map<Long, Long> data = Maps.newHashMapWithExpectedSize(carIndexs.size());
for (CarIndexEntity carIndex : carIndexs) {
data.put(carIndex.getCarId(), carIndex.getCount());
} return data;
}
});
}

其实两种情况都是一样的, 第二个是使用场景是一个service有多个方法都需要用到guava cache.

好了 知道了这些就可以在项目中直接使用了, 更多的内容请看Guava Cache官方文档(翻译版):http://ifeve.com/google-guava-cachesexplained/

[Java 缓存] Java Cache之 Guava Cache的简单应用.的更多相关文章

  1. [Java 缓存] Java Cache之 DCache的简单应用.

    前言 上次总结了下本地缓存Guava Cache的简单应用, 这次来继续说下项目中使用的DCache的简单使用. 这里分为几部分进行总结, 1)DCache介绍; 2)DCache配置及使用; 3)使 ...

  2. google guava cache缓存基本使用讲解

    代码地址:https://github.com/vikde/demo-guava-cache 一.简介 guava cache是google guava中的一个内存缓存模块,用于将数据缓存到JVM内存 ...

  3. 一个缓存使用案例:Spring Cache VS Caffeine 原生 API

    最近在学习本地缓存发现,在 Spring 技术栈的开发中,既可以使用 Spring Cache 的注解形式操作缓存,也可用各种缓存方案的原生 API.那么是否 Spring 官方提供的就是最合适的方案 ...

  4. 自定义缓存管理器 或者 Spring -- cache

    Spring Cache 缓存是实际工作中非常常用的一种提高性能的方法, 我们会在许多场景下来使用缓存. 本文通过一个简单的例子进行展开,通过对比我们原来的自定义缓存和 spring 的基于注释的 c ...

  5. Spring配置cache(concurrentHashMap,guava cache、redis实现)附源码

    在应用程序中,数据一般是存在数据库中(磁盘介质),对于某些被频繁访问的数据,如果每次都访问数据库,不仅涉及到网络io,还受到数据库查询的影响:而目前通常会将频繁使用,并且不经常改变的数据放入缓存中,从 ...

  6. Guava Cache相关

    官方:http://ifeve.com/google-guava-cachesexplained/ 理解:https://segmentfault.com/a/1190000007300118 项目中 ...

  7. Guava Cache 原理分析与最佳实践

    前言 目前大部分互联网架构 Cache 已经成为了必可不少的一环.常用的方案有大家熟知的 NoSQL 数据库(Redis.Memcached),也有大量的进程内缓存比如 EhCache .Guava ...

  8. Java缓存

    Java中要用到缓存的地方很多,首当其冲的就是持久层缓存,针对持久层谈一下: 要实现java缓存有很多种方式,最简单的无非就是static HashMap,这个显然是基于内存缓存,一个map就可以搞定 ...

  9. 浅谈java缓存

    java中要用到缓存的地方很多,首当其冲的就是持久层缓存,针对持久层谈一下: 要实现java缓存有很多种方式,最简单的无非就是static HashMap,这个显然是基于内存缓存,一个map就可以搞定 ...

随机推荐

  1. 【.net 深呼吸】序列化中的“引用保留”

    假设 K 类中有两个属性/字段的类型相同,并且它们引用的是同一个对象实例,在序列化的默认处理中,会为每个引用单独生成数据. 看看下面两个类. [DataContract] public class 帅 ...

  2. Angular2入门系列教程4-服务

    上一篇文章 Angular2入门系列教程-多个组件,主从关系 在编程中,我们通常会将数据提供单独分离出来,以免在编写程序的过程中反复复制粘贴数据请求的代码 Angular2中提供了依赖注入的概念,使得 ...

  3. ASP.NET MVC5+EF6+EasyUI 后台管理系统(69)-微信公众平台开发-功能概述

    系列目录 为什么要先发这个文章? 因为接下来的文章是关于微信开发的系列,心中一定要有一个概念,知道自己接下来要做什么功能. 而且微信到处都是坑,我首先要把微信与本地跑通起来才敢发布,否则中间出现坑导致 ...

  4. .NET Core的日志[1]:采用统一的模式记录日志

    记录各种级别的日志是所有应用不可或缺的功能.关于日志记录的实现,我们有太多第三方框架可供选择,比如Log4Net.NLog.Loggr和Serilog 等,当然我们还可以选择微软原生的诊断框架(相关A ...

  5. 菜鸟Python学习笔记第二天:关于Python黑客。

    2016年1月5日 星期四 天气:还好 一直不知道自己为什么要去学Python,其实Python能做到的Java都可以做到,Python有的有点Java也有,而且Java还是必修课,可是就是不愿意去学 ...

  6. 我这么玩Web Api(一):帮助页面或用户手册(Microsoft and Swashbuckle Help Page)

    前言 你需要为客户编写Api调用手册?你需要测试你的Api接口?你需要和前端进行接口对接?那么这篇文章应该可以帮到你.本文将介绍创建Web Api 帮助文档页面的两种方式,Microsoft Help ...

  7. 工行ICBC_WAPB_B2C支付接口

    一. 前期准备 手机银行(WAP)B2C在线支付接口说明V1.0.0.6.doc 手机银行移动生活商户及门户网站js接口API.doc 支付组件ICBCEBankUtil.dll和infosecapi ...

  8. 你所能用到的BMP格式介绍

    原理篇: 一.编码的意义. 让我们从一个简单的问题开始,-2&-255(中间的操作符表示and的意思)的结果是多少,这个很简单的问题,但是能够写出解答过程的人并不 多.这个看起来和图片格式没有 ...

  9. Activity之概览屏幕(Overview Screen)

    概览屏幕 概览屏幕(也称为最新动态屏幕.最近任务列表或最近使用的应用)是一个系统级别 UI,其中列出了最近访问过的 Activity 和任务. 用户可以浏览该列表并选择要恢复的任务,也可以通过滑动清除 ...

  10. Spark-shell和Spark-Submit的使用

    Spark-shell有两种使用方式: 1:直接Spark-shell 会启动一个SparkSubmit进程来模拟Spark运行环境,是一个单机版的. 2:Spark-shell --master S ...