POJ 1141 Brackets Sequence
Time Limit: 1000MS | Memory Limit: 65536K | |||
Total Submissions: 29502 | Accepted: 8402 | Special Judge |
Description
1. Empty sequence is a regular sequence.
2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.
For example, all of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following character sequences are not:
(, [, ), )(, ([)], ([(]
Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.
Input
Output
Sample Input
([(]
Sample Output
()[()]
Source
题目大意: 给你一贯括号序列(只包含小括号和中括号),让你找出长度最小的regular brackets sequence包含此子序列.其中的regular brackets sequence定义如下:
1)空序列是一个regular brackets sequence;
2)如果s是一个regular brackets sequence,那么[s] 也是一个regular brackets sequence,(s)也是一个regular brackets sequence.
3)如果A,B都是regular brackets sequence,那么AB也是一个regular brackets sequence.
例如:()、[]、()[] 、([]) 、([])()[()]都是regular brackets sequence。
而[[[、 (((((、 ([)] 则都不是regular brackets sequence。其中以“([)]”为例,包含它最小的regular brackets sequence有两个:()[()]或者是([])[].而你只要输出其中一个就行。
//f[i][j]表示区间i~j内需要最少的字符数能够匹配,path[i][j]表示到达该状态是哪种情况,
// -1表示第一个和最后一个,其他表示中间的分段点,然后递归输出(递归改变次序)
#include<cstdio>
#include<cstring>
using namespace std;
#define N 1010
char s[N];
int f[N][N],path[N][N];
void out(int l,int r){
if(l>r) return ;
if(l==r){//到达了最后
if(s[l]=='('||s[l]==')')
printf("()");
else
printf("[]");
return ;
}
if(path[l][r]==-){//首尾,先输出开始,然后递归输出中间,最后输出结尾
putchar(s[l]);
out(l+,r-);
putchar(s[r]);
}
else{
out(l,path[l][r]);
out(path[l][r]+,r);
}
}
int main(){
while(gets(s+)){//有空串,scanf("%s"),不能读空串,然后少一个回车,会出错
int n=strlen(s+);
for(int i=;i<=n;i++) f[i][i]=;//一个的话只需一个就可以匹配
for(int x=;x<n;x++){//枚举区间长度
for(int i=;i<=n-x;i++){//枚举区间开始位置
int j=i+x;
f[i][j]=0x3f3f3f3f;
if((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']')){
if(f[i+][j-]<f[i][j]){
f[i][j]=f[i+][j-];path[i][j]=-;
}
}
for(int k=i;k<j;k++){//中间分隔情况
if(f[i][k]+f[k+][j]<f[i][j]){
f[i][j]=f[i][k]+f[k+][j];path[i][j]=k;
}
}
}
}
out(,n);
putchar('\n');
}
return ;
}
//update 2.0
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N=;
int n,f[N][N];char s[N];
bool match(char a,char b){
if(a=='('&&b==')') return ;
if(a=='['&&b==']') return ;
return ;
}
void print(int i,int j){
if(i>j) return ;
if(i==j){
if(s[i]=='('||s[i]==')') printf("()");
else printf("[]");
return ;
}
int ans=f[i][j];
if(match(s[i],s[j])&&ans==f[i+][j-]){
printf("%c",s[i]);
print(i+,j-);
printf("%c",s[j]);
return ;
}
for(int k=i;k<j;k++){
if(ans==f[i][k]+f[k+][j]){
print(i,k);
print(k+,j);
return ;
}
}
}
int main(){
while(gets(s+)){
n=strlen(s+);
memset(f,0x3f3f3f3f,sizeof f);
for(int i=;i<=n;i++){
f[i+][i]=;
f[i][i]=;
}
for(int i=n-;i>=;i--){
for(int j=i+;j<=n;j++){
f[i][j]=n;
if(match(s[i],s[j])) f[i][j]=min(f[i][j],f[i+][j-]);
for(int k=i;k<j;k++){
f[i][j]=min(f[i][j],f[i][k]+f[k+][j]);
}
}
}
//printf("%d\n",f[1][n]);
print(,n);
putchar('\n');
}
return ;
}
POJ 1141 Brackets Sequence的更多相关文章
- 区间DP POJ 1141 Brackets Sequence
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 29520 Accepted: 840 ...
- poj 1141 Brackets Sequence 区间dp,分块记录
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 35049 Accepted: 101 ...
- POJ 1141 Brackets Sequence(区间DP, DP打印路径)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- POJ 1141 Brackets Sequence (区间DP)
Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...
- poj 1141 Brackets Sequence (区间dp)
题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...
- poj 1141 Brackets Sequence(区间DP)
题目:http://poj.org/problem?id=1141 转载:http://blog.csdn.net/lijiecsu/article/details/7589877 定义合法的括号序列 ...
- POJ 1141 Brackets Sequence(括号匹配二)
题目链接:http://poj.org/problem?id=1141 题目大意:给你一串字符串,让你补全括号,要求补得括号最少,并输出补全后的结果. 解题思路: 开始想的是利用相邻子区间,即dp[i ...
- POJ #1141 - Brackets Sequence - TODO: POJ website issue
A bottom-up DP. To be honest, it is not easy to relate DP to this problem. Maybe, all "most&quo ...
- POJ 1141 Brackets Sequence(DP)
题目链接 很早 很早之前就看过的一题,今天终于A了.状态转移,还算好想,输出路径有些麻烦,搞了一个标记数组的,感觉不大对,一直wa,看到别人有写直接输出的..二了,直接输出就过了.. #include ...
随机推荐
- SharePoint Server 2010 & WorkFlow related Limits
Today, I have come across different workflow related limits for SharePoint Server 2010. Limit Maximu ...
- Android 程序目录及UI的简介
Android程序的目录结构 src:源码的组织管理目录. gen:自动生成的目录,会生成一些重要的文件,如R.java,该目录一般不需要我们编写. assets:该目录文件不会被编译成二进制编码,多 ...
- [android] 手机卫士保存密码时进行md5加密
一般的手机没有root权限,进不去data/data目录,当手机刷机了后,拥有root权限,就可以进入data/data目录,查看我们保存的密码文件,因此我们需要对存入的密码进行MD5加密 获取Mes ...
- Java 之 内部类
(static修饰的成员属于整个类,而不属于单个对象) 定义:将一个类放到另一个类的内部定义,这个在内部定义的类就叫做内部类(也有的成嵌套类),包含内部类的类被称为外部类(也有的称宿主类). 1.非静 ...
- 21分钟 MySQL 入门教程
目录 一.MySQL的相关概念介绍 二.Windows下MySQL的配置 配置步骤 MySQL服务的启动.停止与卸载 三.MySQL脚本的基本组成 四.MySQL中的数据类型 五.使用MySQL数据库 ...
- 使用batch insert解决MySQL的insert吞吐量问题
最近使用了一个非常简单易用的方法解决了业务上的一个insert吞吐量的问题,在此总结一下. 首先我们明确一下,insert吞吐量其实并不是指的IPS(insert per second),而是指的RP ...
- 常用的JSTL函数
下面是JSTL中自带的方法列表以及其描述 函数名 函数说明 使用举例 fn:contains 判断字符串是否包含另外一个字符串 <c:if test="${fn:contains(na ...
- JavaScript Patterns 4.7 Init-Time Branching
When you know that a certain condition will not change throughout the life of the program, it makes ...
- MongoDB学习笔记——文档操作之查询
查询文档 使用db.COLLECTION_NAME.findOne()可以查询所有满足条件的第一条数据 预发格式如下: db.COLLECTION_NAME.findOne(<query> ...
- Struts2 Spring Hibernate等各个版本下载推荐
推荐jar包下载地址: http://mvnrepository.com/ 应有尽有