poj 1330 LCA
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
const int MAXN=;
int rmq[*MAXN];//rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[*MAXN];
int dp[*MAXN][];//最小值对应的下标
void init(int n)
{
mm[]=-;
for(int i=;i<=n;i++)
{
mm[i]=((i&(i-))==)?mm[i-]+:mm[i-];
dp[i][]=i;
}
for(int j=;j<=mm[n];j++)
for(int i=;i+(<<j)-<=n;i++)
dp[i][j]=rmq[dp[i][j-]]<rmq[dp[i+(<<(j-))][j-]]?dp[i][j-]:dp[i+(<<(j-))][j-];
}
int query(int a,int b)//查询[a,b]之间最小值的下标
{
if(a > b)swap(a,b);
int k=mm[b-a+];
return rmq[dp[a][k]]<=rmq[dp[b-(<<k)+][k]]?dp[a][k]:dp[b-(<<k)+][k];
}
};
//边的结构体定义
struct Edge
{
int to,next;
};
Edge edge[MAXN*];
int tot,head[MAXN];
int F[MAXN*];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN];//P[i]表示点i在F中第一次出现的位置
int cnt;
ST st;
void init()
{
tot=;
memset(head,-,sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
void dfs(int u,int pre,int dep)
{
F[++cnt]=u;
rmq[cnt]=dep;
P[u]=cnt;
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].to;
if(v==pre)continue;
dfs(v,u,dep+);
F[++cnt]=u;
rmq[cnt]=dep;
}
}
void LCA_init(int root,int node_num)//查询LCA前的初始化
{
cnt=;
dfs(root,root,);
st.init(*node_num-);
}
int query_lca(int u,int v)//查询u,v的lca编号
{
return F[st.query(P[u],P[v])];
}
bool flag[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
int T;
int N;
int u,v;
scanf("%d",&T);
while(T--)
{
scanf("%d",&N);
init();
memset(flag,false,sizeof(flag));
for(int i=;i<N;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
flag[v]=true;
}
int root;
for(int i=;i<=N;i++)
if(!flag[i])
{
root=i;
break;
}
LCA_init(root,N);
scanf("%d%d",&u,&v);
printf("%d\n",query_lca(u,v));
}
return ;
}
poj 1330 LCA的更多相关文章
- POJ 1330 LCA裸题~
POJ 1330 Description A rooted tree is a well-known data structure in computer science and engineerin ...
- poj 1330 LCA (倍增+离线Tarjan)
/* 先来个倍增 */ #include<iostream> #include<cstring> #include<cstdio> #define maxn 100 ...
- poj 1330 LCA最近公共祖先
今天学LCA,先照一个模板学习代码,给一个离线算法,主要方法是并查集加上递归思想. 再搞,第一个离线算法是比较常用了,基本离线都用这种方法了,复杂度O(n+q).通过递归思想和并查集来寻找最近公共祖先 ...
- POJ 1330 LCA最近公共祖先 离线tarjan算法
题意要求一棵树上,两个点的最近公共祖先 即LCA 现学了一下LCA-Tarjan算法,还挺好理解的,这是个离线的算法,先把询问存贮起来,在一遍dfs过程中,找到了对应的询问点,即可输出 原理用了并查集 ...
- POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)
/* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...
- POJ - 1330 Nearest Common Ancestors(dfs+ST在线算法|LCA倍增法)
1.输入树中的节点数N,输入树中的N-1条边.最后输入2个点,输出它们的最近公共祖先. 2.裸的最近公共祖先. 3. dfs+ST在线算法: /* LCA(POJ 1330) 在线算法 DFS+ST ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
随机推荐
- 关闭 ubuntu System program problem detected
每次开机都出现: System program problem detected 很麻烦,关闭方法: vim /etc/default/apport # set this to 0 to disabl ...
- BNU 2418 Ultra-QuickSort (线段树求逆序对)
题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=2418 解题报告:就是给你n个数,然后让你求这个数列的逆序对是多少?题目中n的范围是n & ...
- TCP协议漏洞影响大量Linux设备
导读 本周三在得州奥斯丁举行的 USENIX 安全研讨会上,加州大学河滨分校研究生 Yue Cao 将报告一个严重的TCP协议边信道漏洞(PDF),该漏洞允许攻击者远程劫持任意两主机之间的会话.该漏洞 ...
- poj2240最短路 floyd
Arbitrage Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 17360 Accepted: 7308 Descri ...
- Dan计划:重新定义人生的10000个小时
一. 1985年,芝加哥大学的Benjamin Bloom教授,出版了一本重要著作<如何培养天才>(Developing Talent in Young People). 他研究的是,如何 ...
- sharepoint修改密码
增加SharePoint2010修改域密码功能 前提SharePoint2010的用户基于AD的,因此修改密码是修改了AD的密码,当然也可以修改本机密码(非域的密码).这里我们讨论修改域密码.我们修改 ...
- c++关键字之#define typedef const
[#define] #define是预处理指令,在编译预处理时进行简单的替换,不作正确性检查. [typedef] typedef只是为了增加可读性而为标识符另起的新名称 在自己的作用域内给一个已经存 ...
- 【转】Solr从数据库导入数据(DIH)
本文转自:http://blog.csdn.net/xiaoyu714543065/article/details/11849115 一. 数据导入(DataImportHandler-DIH) DI ...
- iOS 利用constraint实现2个控件上下的空白是相等的
说的有点乱,先看个图把 其实这个constrant的目的就是控制两个方形的控件上方和下方的空白大小. 对于每一个方块来说,他们上方和下方的空白是相同的.这种“居中”的设计到处可见.一个控件想实现这种居 ...
- Linux下配置Hadoop 1.2.1
首先要下载hadoop的包,版本选择1.2.1的,下载地址为:http://mirrors.cnnic.cn/apache/hadoop/common/hadoop-1.2.1/ 这里可以下载hado ...