[hihoCoder] 博弈游戏·Nim游戏
描述
今天我们要认识一对新朋友,Alice与Bob。
Alice与Bob总是在进行各种各样的比试,今天他们在玩一个取石子的游戏。
在这个游戏中,Alice和Bob放置了N堆不同的石子,编号1..N,第i堆中有A[i]个石子。
每一次行动,Alice和Bob可以选择从一堆石子中取出任意数量的石子。至少取1颗,至多取出这一堆剩下的所有石子。
Alice和Bob轮流行动,取走最后一个石子的人获得胜利。
假设每一轮游戏都是Alice先行动,请你判断在给定的情况下,如果双方都足够聪明,谁会获得胜利?
输入
第1行:1个整数N。表示石子堆数。1≤N≤100
第2行:N个整数,第i个整数表示第i堆石子的个数A[i],1≤A[i]≤10000
输出
第1行:1个字符串,若Alice能够获胜输出"Alice",否则输出"Bob"
- 样例输入
-
3
3 2 1 - 样例输出
-
Bob
这一次我们讲的是一个古老而又经典的博弈问题:Nim游戏。
Nim游戏是经典的公平组合游戏(ICG),对于ICG游戏我们有如下定义:
1、两名选手;
2、两名选手轮流行动,每一次行动可以在有限合法操作集合中选择一个;
3、游戏的任何一种可能的局面(position),合法操作集合只取决于这个局面本身;局面的改变称为“移动”(move)。
4、若轮到某位选手时,该选手的合法操作集合为空,则这名选手判负。
对于第三条,我们有更进一步的定义Position,我们将Position分为两类:
P-position:在当前的局面下,先手必败。
N-position:在当前的局面下,先手必胜。
他们有如下性质:
1.合法操作集合为空的局面是P-position;
2.可以移动到P-position的局面是N-position;
3.所有移动都只能到N-position的局面是P-position。
在这个游戏中,我们已经知道A[] = {0,0,...,0}的局面是P局面,那么我们可以通过反向枚举来推导出所有的可能局面,总共的状态数量为A[1]*A[2]*...*A[N]。并且每一次的状态转移很多。
虽然耗时巨大,但确实是一个可行方法。
当然,我们这里会讲这个题目就说明肯定没那么复杂。没错,对于这个游戏有一个非常神奇的结论:
对于一个局面,当且仅当A[1] xor A[2] xor ... xor A[N] = 0时,该局面为P局面。
对于这个结论的证明如下:
1. 全0状态为P局面,即A[i]=0,则A[1] xor A[2] xor ... xor A[N] = 0。
2. 从任意一个A[1] xor A[2] xor ... xor A[N] = k != 0的状态可以移动到A[1] xor A[2] xor ... xor A[N] = 0的状态。由于xor计算的特殊性,我们知道一定有一个A[i]最高位与k最高位的1是相同的,那么必然有A[i] xor k < A[i]的,所以我们可以通过改变A[i]的值为A[i]',使得A[1] xor A[2] xor ... xor A[i]' xor ... xor A[N] = 0。
3. 对于任意一个局面,若A[1] xor A[2] xor ... xor A[N] = 0,则不存在任何一个移动可以使得新的局面A[1] xor A[2] xor ... xor A[N] != 0。由于xor计算的特殊性,我们可以知道,一定是存在偶数个1时该位置的1才会被消除。若只改变一个A[i],无论如何都会使得1的数量发生变化,从而导致A[1] xor A[2] xor ... xor A[N] != 0。
以上三条满足ICG游戏中N,P局面的转移性质,所以该结论的正确性也得到了证明。
#include <bits/stdc++.h>
using namespace std; int n, p, a; int main() {
while (cin >> n) {
for (int i = ; i < n; ++i) {
cin >> a;
if (i == ) p = a;
else p ^= a;
}
if (p == ) cout << "Bob" << endl;
else cout << "Alice" << endl;
}
return ;
}
[hihoCoder] 博弈游戏·Nim游戏的更多相关文章
- hihocoder 1163 博弈游戏·Nim游戏
1163 : 博弈游戏·Nim游戏 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 今天我们要认识一对新朋友,Alice与Bob. Alice与Bob总是在进行各种各样的 ...
- hiho一下 第四十五周 博弈游戏·Nim游戏·二 [ 博弈 ]
传送门 题目1 : 博弈游戏·Nim游戏·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Alice和Bob这一次准备玩一个关于硬币的游戏:N枚硬币排成一列,有的正面 ...
- hihocoder博弈游戏·Nim游戏·三
在这一次游戏中Alice和Bob决定在原来的Nim游戏上增加一条规则:每一次行动时,不仅可以选择一堆取走任意数量的石子(至少取1颗,至多取出这一堆剩下的所有石子),还可以选择将一堆石子分成两堆石子,但 ...
- Nim博弈(nim游戏)
http://blog.csdn.net/qiankun1993/article/details/6765688 NIM 游戏 重点结论:对于一个Nim游戏的局面(a1,a2,...,an),它是P- ...
- 洛谷P2197 nim游戏(Nim游戏)
题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取完,不能不取.每次只能从一堆里 ...
- 【HIHOCODER 1163】 博弈游戏·Nim游戏
描述 今天我们要认识一对新朋友,Alice与Bob. Alice与Bob总是在进行各种各样的比试,今天他们在玩一个取石子的游戏. 在这个游戏中,Alice和Bob放置了N堆不同的石子,编号1..N,第 ...
- hihoCoder hiho一下 第四十六周 博弈游戏·Nim游戏·三( sg函数 )
题意: 给出几堆石子数量,每次可以取走一堆中任意数量的石头,也可以将一堆分成两堆,而不取.最后取走者胜. 思路: 先规矩地计算出sg值,再对每个数量查SG值就可以了.最后求异或和.和不为0的就是必赢. ...
- hiho一下 第四十五周 博弈游戏·Nim游戏·二(转成NIm)
Alice和Bob这一次准备玩一个关于硬币的游戏:N枚硬币排成一列,有的正面朝上,有的背面朝上,从左到右依次编号为1..N.现在两人轮流翻硬币,每次只能将一枚正面朝上的硬币翻过来,并且可以随自己的意愿 ...
- hiho一下 第四十四周 博弈游戏·Nim游戏(直接公式解)
证明看这http://hihocoder.com/contest/hiho44/problem/1 思路: 设 sg=a[1]^a[2]^...a[n],若sg=0,则先手Alice必败,否则必赢. ...
随机推荐
- Robot Framework测试框架学习笔记
一.Robot Framework框架简介 Robot Framework是一种基于Python的可扩展关键字驱动自动化测试框架,通常用于端到端的可接收测试和可接收测试驱动的开发.可以 ...
- EasyUI queryParams属性 在请求远程数据同时给action方法传参
http://www.cnblogs.com/iack/p/3530500.html?utm_source=tuicool EasyUI queryParams属性 在请求远程数据同时给action方 ...
- DataTable列上多值运算
1.从网上找了个中缀算法(也不知道什么前缀后缀,抱歉),可以对字符串表达式进行运算 2.有些时候还是会用到ASCII码表的 char c = expression[k];//expression为一字 ...
- 伪分布模式下执行wordcount实例时报错解决办法
问题1.不能分配内存,错误提示如下: FAILEDjava.lang.RuntimeException: Error while running command to get file permiss ...
- ASP.NET版Memcached监控工具(转载)
在上一篇文章<使用Memcached提高.NET应用程序的性能>中周公讲述如何在.NET中使用Memcached来提高.NET应用程序的性 能.在实际的使用中有可能出现Memcached因 ...
- sparkR操作HDFS上面的CSV文件
./bin/sparkR --packages com.databricks:spark-csv_2.10:1.3.0 --master yarn hdfs://master:9000/tmp/dem ...
- 新浪微博客户端(13)-使用UIWebView加载OAuth授权界面
使用UIWebView加载OAuth授权界面 DJOAuthViewController.m #import "DJOAuthViewController.h" @interfac ...
- 微信内置浏览器的 User Agent的判断
如何判断微信内置浏览器,首先需要获取微信内置浏览器的User Agent,经过在 iPhone 上微信的浏览器的检测,它的 User Agent 是: Mozilla/5.0 (iPhone; CPU ...
- javascript trigger触发事件
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 前端框架react研究
摘要: 最近公司要做一个嵌套在app中的应用,考虑着用Facebook的react来开发view,所以就研究了下.下面是我在开发中遇到的坑,希望能给你帮助. 项目地址:https://github.c ...