Permutations

Given a collection of numbers, return all possible permutations.

For example,
[1,2,3] have the following permutations:
[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1].

求数组元素的全排列,数组不含重复元素

算法1:递归

类似于DFS的递归. 对于包含n个元素的数组,先确定第一位置的元素,第一个位置有n中可能(每次把后面的元素和第一个元素交换),然后求子数组[2…n]的全排列。由于一个数列的总共有n!个排列,因此时间复杂度为O(n!)

class Solution {
public:
vector<vector<int> > permute(vector<int> &num) {
vector<vector<int> > res;
if(num.size() == 0)return res;
vector<int> tmpres;
permuteRecur(num, 0, res, tmpres);
return res;
} void permuteRecur(vector<int> &num, int index, vector<vector<int> >&res, vector<int>&tmpres)
{
if(index == num.size())
{
res.push_back(tmpres);
return;
}
for(int i = index; i < num.size(); i++)
{
swap(num[index], num[i]);
tmpres.push_back(num[index]);
permuteRecur(num, index+1, res, tmpres);
tmpres.pop_back();
swap(num[index], num[i]);
}
}
};

Permutations II

Given a collection of numbers that might contain duplicates, return all possible unique permutations.

For example,
[1,1,2] have the following unique permutations:

[1,1,2], [1,2,1], and [2,1,1].

求数组元素的全排列,数组含重复元素

分析:要避免重复,就要保证我们枚举某个位置的元素时,不能枚举重复。

算法2:

在算法1的基础上,当我们枚举第i个位置的元素时,若要把后面第j个元素和i交换,则先要保证[i…j-1]范围内没有和位置j相同的元素。有以下两种做法(1)可以每次在需要交换时进行顺序查找;(2)用哈希表来查重。具体见下面的代码。

注意不要误以为以下两种做法能够去重:(1)最开始先对数组进行排序,以后每次交换时,只要保证当前要交换的元素和前一个元素不同,这种做法是错误的,虽然开始进行了排序,但是元素的交换会使数组再次变的无序(2)每次进入递归函数permuteRecur时,对从当前索引开始的子数组排序,这种做法也是错误的,因为每次交换元素后,我们要恢复交换的元素,如果在递归函数内排序,就不能正确的恢复交换的元素。                                   本文地址

class Solution {
public:
vector<vector<int> > permuteUnique(vector<int> &num) {
vector<vector<int> > res;
if(num.size() == 0)return res;
vector<int> tmpres;
permuteRecur(num, 0, res, tmpres);
return res;
} void permuteRecur(vector<int> &num, int index, vector<vector<int> >&res, vector<int>&tmpres)
{
if(index == num.size())
{
res.push_back(tmpres);
return;
}
for(int i = index; i < num.size(); i++)
if(i == index || !find(num, index, i, num[i]))
{
swap(num[index], num[i]);
tmpres.push_back(num[index]);
permuteRecur(num, index+1, res, tmpres);
tmpres.pop_back();
swap(num[index], num[i]);
}
}
//从数组的[start,end)范围内寻找元素target
bool find(vector<int> &num, int start, int end, int target)
{
for(int i = start; i < end; i++)
if(num[i] == target)
return true;
return false;
}
};
class Solution {
public:
vector<vector<int> > permuteUnique(vector<int> &num) {
vector<vector<int> > res;
if(num.size() == 0)return res;
vector<int> tmpres;
permuteRecur(num, 0, res, tmpres);
return res;
} void permuteRecur(vector<int> &num, int index, vector<vector<int> >&res, vector<int>&tmpres)
{
if(index == num.size())
{
res.push_back(tmpres);
return;
}
unordered_set<int> umap;
for(int i = index; i < num.size(); i++)
if(umap.find(num[i]) == umap.end())
{
umap.insert(num[i]);
swap(num[index], num[i]);
tmpres.push_back(num[index]);
permuteRecur(num, index+1, res, tmpres);
tmpres.pop_back();
swap(num[index], num[i]);
}
}
};

算法3:

我们知道c++STL中有个函数next_permutation,这个函数时求某个排列的下一个大的排列。所谓的下一个大的排列可以如下解释:如果把数组元素看成是某个字符,这些字符组成一个字符串,下一个大的排列就是比当前排列代表的字符串更大(按字典序比较),且不存在介于两个字符串之间的字符串。例如对于字符串abc,它的下一个大排列是acb。

对于某个排列,我们如下求它的下一个大的排列:

  • 从最尾端开始往前寻找两个相邻的元素,两者满足i < ii(令第一个元素为i,第二个元素为ii)
  • 如果没有找到这样的一对元素则,表明当前的排列是最大的,没有下一个大的排列
  • 如果找到,再从末尾开始找出第一个大于i的元素,记为j
  • 交换元素i, j,再将ii后面的所有元素颠倒排列(包括ii)
  • 按照的STL实现,如果某个排列没有比他大的下一个排列,调用这个函数还是会把原排列翻转,即得到最小的排列

有了这个函数后,这一题,我们先对数组按照升序排序,这样初始排列就是最小的,然后循环对数组求next_permutation,直到找不到下一个大的排列。

class Solution {
public:
vector<vector<int> > permuteUnique(vector<int> &num) {
vector<vector<int> > res;
if(num.size() == 0)return res;
sort(num.begin(), num.end());
res.push_back(num);
while(mynext_permutation(num))res.push_back(num);
return res;
} bool mynext_permutation(vector<int>&num)
{
int n = num.size();
if(n <= 1)return false;
for(int i = n-2, ii = n-1; i >= 0; i--,ii--)
{
if(num[i] < num[ii])
{
int j = n-1;
while(num[j] <= num[i])j--;//从尾部找到第一个比num[i]大的数,一定可以找到
swap(num[i], num[j]);
reverse(num.begin()+ii, num.end());
return true;
}
}
reverse(num.begin(), num.end());
return false;
}
};

STL还有一个prev_permutation函数,求某个排列的上一个比他小的排列,方法和next_permutation相似:

对于某个排列,我们如下求它的上一个更小的排列:

  • 从最尾端开始往前寻找两个相邻的元素,两者满足i > ii(令第一个元素为i,第二个元素为ii)
  • 如果没有找到这样的一对元素则,表明当前的排列是最小的,没有下一个更小的排列
  • 如果找到,再从末尾开始找出第一个小于i的元素,记为j
  • 交换元素i, j,再将ii后面的所有元素颠倒排列(包括ii)
  • 按照的STL实现,如果某个排列没有比他小的下一个排列,调用这个函数还是会把原排列翻转,即得到最大的排列

有了这个函数后,这一题,我们先对数组按照降序排序,这样初始排列就是最大的,然后循环对数组求prev_permutation,直到找不到下一个更小的排列。

class Solution {
public:
vector<vector<int> > permuteUnique(vector<int> &num) {
vector<vector<int> > res;
if(num.size() == 0)return res;
sort(num.begin(), num.end(), greater<int>());
res.push_back(num);
while(myprev_permutation(num))res.push_back(num);
return res;
} bool myprev_permutation(vector<int>&num)
{
int n = num.size();
if(n <= 1)return false;
for(int i = n-2, ii = n-1; i >= 0; i--,ii--)
{
if(num[i] > num[ii])
{
int j = n-1;
while(num[j] >= num[i])j--;//从尾部找到第一个比num[i]小的数,一定可以找到
swap(num[i], num[j]);
reverse(num.begin()+ii, num.end());
return true;
}
}
reverse(num.begin(), num.end());
return false;
}
};

【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3662644.html

LeetCode:Permutations, Permutations II(求全排列)的更多相关文章

  1. [LeetCode] Beautiful Arrangement II 优美排列之二

    Given two integers n and k, you need to construct a list which contains n different positive integer ...

  2. [LeetCode]60. Permutation Sequence求全排列第k个

    /* n个数有n!个排列,第k个排列,是以第(k-1)/(n-1)!个数开头的集合中第(k-1)%(n-1)!个数 */ public String getPermutation(int n, int ...

  3. Java for LeetCode 047 Permutations II

    Given a collection of numbers that might contain duplicates, return all possible unique permutations ...

  4. 【LeetCode】Permutations II 解题报告

    [题目] Given a collection of numbers that might contain duplicates, return all possible unique permuta ...

  5. [LeetCode] 47. Permutations II 全排列 II

    Given a collection of numbers that might contain duplicates, return all possible unique permutations ...

  6. [LeetCode] 46. Permutations 全排列

    Given a collection of distinct integers, return all possible permutations. Example: Input: [1,2,3] O ...

  7. 【LeetCode】Permutations 解题报告

    全排列问题.经常使用的排列生成算法有序数法.字典序法.换位法(Johnson(Johnson-Trotter).轮转法以及Shift cursor cursor* (Gao & Wang)法. ...

  8. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  9. [LeetCode] 系统刷题2_排列组合

    要用到backtracking,是否要跟backtracking放到一起总结? 适用范围: 几乎所有搜索问题 什么时候输出 哪些情况需要跳过 相关题目: [LeetCode] 78. Subsets ...

随机推荐

  1. java语句练习1

    public class Demo完数{ /* * 问题:求1000以内的完数(一个数等于除它本身之外的因数之和)及个数. * 分析:例如6=1+2+3 * 遍历语句:判断语句:计数器:1除外 */ ...

  2. js分辨浏览器类别和版本

    function BrowserInfo() { var ua = navigator.userAgent.toLowerCase(); var Sys = {}; var s; (s = ua.ma ...

  3. dubbox新特性介绍

    dubbx是当当网对原阿里dubbo2.x的升级,并且兼容原有的dubbox.其中升级了zookeeper和spring版本,并且支持restfull风格的远程调用. dubbox git地址:  h ...

  4. 【kettle】window安装与配置

    1.下载kettle包,并解压http://community.pentaho.com/projects/data-integration/2.安装jdk,并配置java环境 a).打开我的电脑--属 ...

  5. Java设计模式——装饰者模式

    JAVA 设计模式 装饰者模式 用途 装饰者模式 (Decorator) 动态地给一个对象添加一些额外的职责.就增加功能来说,Decorator 模式相比生成子类更为灵活. 装饰者模式是一种结构式模式 ...

  6. redis配置认证密码

    redis配置密码1.通过配置文件进行配置yum方式安装的redis配置文件通常在/etc/redis.conf中,打开配置文件找到 #requirepass foobared 去掉行前的注释,并修改 ...

  7. storyboard xib下label怎么自适应宽度高度

    先看需求:两个Label,要求蓝色的label紧跟在红色的label文字后面  ok首选正常添加约束 红色的Label添加宽度,高度,左边,上边约束 蓝色的Label添加宽度,高度,左边,和红色的水平 ...

  8. java核心知识点学习----创建线程的第三种方式Callable和Future CompletionService

    前面已经指出通过实现Runnable时,Thread类的作用就是将run()方法包装成线程执行体,那么是否可以直接把任意方法都包装成线程执行体呢?Java目前不行,但其模仿者C#中是可以的. Call ...

  9. iOS项目中常用的第三方开源库

    1.项目使用的第三方开源库 项目使用了CocoaPods(类似java中的maven)管理常用的第三方库,一些特殊的单独引用,下面介绍下比较好用的几个. (1)AFNetworking 目前比较推荐的 ...

  10. python 写文件,utf-8问题

    写文件报数据. 同样的编码. 含中文字段的输出文件 编码为utf-8 无中文的却是asc import codecstxt = u”qwer”file=codecs.open(“test”,”w”,” ...