I read the section Metrics on spark website. I wish to try it on the wordcount example, I can't make it work.

spark/conf/metrics.properties :

# Enable CsvSink for all instances
*.sink.csv.class=org.apache.spark.metrics.sink.CsvSink # Polling period for CsvSink
*.sink.csv.period=1 *.sink.csv.unit=seconds # Polling directory for CsvSink
*.sink.csv.directory=/home/spark/Documents/test/ # Worker instance overlap polling period
worker.sink.csv.period=1 worker.sink.csv.unit=seconds # Enable jvm source for instance master, worker, driver and executor
master.source.jvm.class=org.apache.spark.metrics.source.JvmSource worker.source.jvm.class=org.apache.spark.metrics.source.JvmSource driver.source.jvm.class=org.apache.spark.metrics.source.JvmSource executor.source.jvm.class=org.apache.spark.metrics.source.JvmSource

  I run my app in local like in the documentation :

$SPARK_HOME/bin/spark-submit   --class "SimpleApp"   --master local[4]   target/scala-2.10/simple-project_2.10-1.0.jar

  

I checked /home/spark/Documents/test/ and it is empty.

What did I miss?

Shell:

$SPARK_HOME/bin/spark-submit   --class "SimpleApp"   --master local[4]  --conf   spark.metrics.conf=/home/spark/development/spark/conf/metrics.properties  target/scala-2.10/simple-project_2.10-1.0.jar
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
INFO SparkContext: Running Spark version 1.3.0
WARN Utils: Your hostname, cv-local resolves to a loopback address: 127.0.1.1; using 192.168.1.64 instead (on interface eth0)
WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
INFO SecurityManager: Changing view acls to: spark
INFO SecurityManager: Changing modify acls to: spark
INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(spark); users with modify permissions: Set(spark)
INFO Slf4jLogger: Slf4jLogger started
INFO Remoting: Starting remoting
INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@cv-local.local:35895]
INFO Utils: Successfully started service 'sparkDriver' on port 35895.
INFO SparkEnv: Registering MapOutputTracker
INFO SparkEnv: Registering BlockManagerMaster
INFO DiskBlockManager: Created local directory at /tmp/spark-447d56c9-cfe5-4f9d-9e0a-6bb476ddede6/blockmgr-4eaa04f4-b4b2-4b05-ba0e-fd1aeb92b289
INFO MemoryStore: MemoryStore started with capacity 265.4 MB
INFO HttpFileServer: HTTP File server directory is /tmp/spark-fae11cd2-937e-4be3-a273-be8b4c4847df/httpd-ca163445-6fff-45e4-9c69-35edcea83b68
INFO HttpServer: Starting HTTP Server
INFO Utils: Successfully started service 'HTTP file server' on port 52828.
INFO SparkEnv: Registering OutputCommitCoordinator
INFO Utils: Successfully started service 'SparkUI' on port 4040.
INFO SparkUI: Started SparkUI at http://cv-local.local:4040
INFO SparkContext: Added JAR file:/home/spark/workspace/IdeaProjects/wordcount/target/scala-2.10/simple-project_2.10-1.0.jar at http://192.168.1.64:52828/jars/simple-project_2.10-1.0.jar with timestamp 1444049152348
INFO Executor: Starting executor ID <driver> on host localhost
INFO AkkaUtils: Connecting to HeartbeatReceiver: akka.tcp://sparkDriver@cv-local.local:35895/user/HeartbeatReceiver
INFO NettyBlockTransferService: Server created on 60320
INFO BlockManagerMaster: Trying to register BlockManager
INFO BlockManagerMasterActor: Registering block manager localhost:60320 with 265.4 MB RAM, BlockManagerId(<driver>, localhost, 60320)
INFO BlockManagerMaster: Registered BlockManager
INFO MemoryStore: ensureFreeSpace(34046) called with curMem=0, maxMem=278302556
INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 33.2 KB, free 265.4 MB)
INFO MemoryStore: ensureFreeSpace(5221) called with curMem=34046, maxMem=278302556
INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 5.1 KB, free 265.4 MB)
INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:60320 (size: 5.1 KB, free: 265.4 MB)
INFO BlockManagerMaster: Updated info of block broadcast_0_piece0
INFO SparkContext: Created broadcast 0 from textFile at SimpleApp.scala:11
WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
WARN LoadSnappy: Snappy native library not loaded
INFO FileInputFormat: Total input paths to process : 1
INFO SparkContext: Starting job: count at SimpleApp.scala:12
INFO DAGScheduler: Got job 0 (count at SimpleApp.scala:12) with 2 output partitions (allowLocal=false)
INFO DAGScheduler: Final stage: Stage 0(count at SimpleApp.scala:12)
INFO DAGScheduler: Parents of final stage: List()
INFO DAGScheduler: Missing parents: List()
INFO DAGScheduler: Submitting Stage 0 (MapPartitionsRDD[2] at filter at SimpleApp.scala:12), which has no missing parents
INFO MemoryStore: ensureFreeSpace(2848) called with curMem=39267, maxMem=278302556
INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 2.8 KB, free 265.4 MB)
INFO MemoryStore: ensureFreeSpace(2056) called with curMem=42115, maxMem=278302556
INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 2.0 KB, free 265.4 MB)
INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on localhost:60320 (size: 2.0 KB, free: 265.4 MB)
INFO BlockManagerMaster: Updated info of block broadcast_1_piece0
INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:839
INFO DAGScheduler: Submitting 2 missing tasks from Stage 0 (MapPartitionsRDD[2] at filter at SimpleApp.scala:12)
INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, PROCESS_LOCAL, 1391 bytes)
INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, localhost, PROCESS_LOCAL, 1391 bytes)
INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
INFO Executor: Fetching http://192.168.1.64:52828/jars/simple-project_2.10-1.0.jar with timestamp 1444049152348
INFO Utils: Fetching http://192.168.1.64:52828/jars/simple-project_2.10-1.0.jar to /tmp/spark-cab5a940-e2a4-4caf-8549-71e1518271f1/userFiles-c73172c2-7af6-4861-a945-b183edbbafa1/fetchFileTemp4229868141058449157.tmp
INFO Executor: Adding file:/tmp/spark-cab5a940-e2a4-4caf-8549-71e1518271f1/userFiles-c73172c2-7af6-4861-a945-b183edbbafa1/simple-project_2.10-1.0.jar to class loader
INFO CacheManager: Partition rdd_1_1 not found, computing it
INFO CacheManager: Partition rdd_1_0 not found, computing it
INFO HadoopRDD: Input split: file:/home/spark/development/spark/conf/metrics.properties:2659+2659
INFO HadoopRDD: Input split: file:/home/spark/development/spark/conf/metrics.properties:0+2659
INFO MemoryStore: ensureFreeSpace(7840) called with curMem=44171, maxMem=278302556
INFO MemoryStore: Block rdd_1_0 stored as values in memory (estimated size 7.7 KB, free 265.4 MB)
INFO BlockManagerInfo: Added rdd_1_0 in memory on localhost:60320 (size: 7.7 KB, free: 265.4 MB)
INFO BlockManagerMaster: Updated info of block rdd_1_0
INFO MemoryStore: ensureFreeSpace(8648) called with curMem=52011, maxMem=278302556
INFO MemoryStore: Block rdd_1_1 stored as values in memory (estimated size 8.4 KB, free 265.4 MB)
INFO BlockManagerInfo: Added rdd_1_1 in memory on localhost:60320 (size: 8.4 KB, free: 265.4 MB)
INFO BlockManagerMaster: Updated info of block rdd_1_1
INFO Executor: Finished task 1.0 in stage 0.0 (TID 1). 2399 bytes result sent to driver
INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 2399 bytes result sent to driver
INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 139 ms on localhost (1/2)
INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 133 ms on localhost (2/2)
INFO DAGScheduler: Stage 0 (count at SimpleApp.scala:12) finished in 0.151 s
INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
INFO DAGScheduler: Job 0 finished: count at SimpleApp.scala:12, took 0.225939 s
INFO SparkContext: Starting job: count at SimpleApp.scala:13
INFO DAGScheduler: Got job 1 (count at SimpleApp.scala:13) with 2 output partitions (allowLocal=false)
INFO DAGScheduler: Final stage: Stage 1(count at SimpleApp.scala:13)
INFO DAGScheduler: Parents of final stage: List()
INFO DAGScheduler: Missing parents: List()
INFO DAGScheduler: Submitting Stage 1 (MapPartitionsRDD[3] at filter at SimpleApp.scala:13), which has no missing parents
INFO MemoryStore: ensureFreeSpace(2848) called with curMem=60659, maxMem=278302556
INFO MemoryStore: Block broadcast_2 stored as values in memory (estimated size 2.8 KB, free 265.3 MB)
INFO MemoryStore: ensureFreeSpace(2056) called with curMem=63507, maxMem=278302556
INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 2.0 KB, free 265.3 MB)
INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on localhost:60320 (size: 2.0 KB, free: 265.4 MB)
INFO BlockManagerMaster: Updated info of block broadcast_2_piece0
INFO SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:839
INFO DAGScheduler: Submitting 2 missing tasks from Stage 1 (MapPartitionsRDD[3] at filter at SimpleApp.scala:13)
INFO TaskSchedulerImpl: Adding task set 1.0 with 2 tasks
INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 2, localhost, PROCESS_LOCAL, 1391 bytes)
INFO TaskSetManager: Starting task 1.0 in stage 1.0 (TID 3, localhost, PROCESS_LOCAL, 1391 bytes)
INFO Executor: Running task 0.0 in stage 1.0 (TID 2)
INFO Executor: Running task 1.0 in stage 1.0 (TID 3)
INFO BlockManager: Found block rdd_1_0 locally
INFO Executor: Finished task 0.0 in stage 1.0 (TID 2). 1830 bytes result sent to driver
INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 2) in 9 ms on localhost (1/2)
INFO BlockManager: Found block rdd_1_1 locally
INFO Executor: Finished task 1.0 in stage 1.0 (TID 3). 1830 bytes result sent to driver
INFO TaskSetManager: Finished task 1.0 in stage 1.0 (TID 3) in 10 ms on localhost (2/2)
INFO DAGScheduler: Stage 1 (count at SimpleApp.scala:13) finished in 0.011 s
INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
INFO DAGScheduler: Job 1 finished: count at SimpleApp.scala:13, took 0.024084 s
Lines with a: 5, Lines with b: 12

  

Spark metrics on wordcount example的更多相关文章

  1. Spark初步 从wordcount开始

    Spark初步-从wordcount开始 spark中自带的example,有一个wordcount例子,我们逐步分析wordcount代码,开始我们的spark之旅. 准备工作 把README.md ...

  2. Spark练习之wordcount,基于排序机制的wordcount

    Spark练习之wordcount 一.原理及其剖析 二.pom.xml 三.使用Java进行spark的wordcount练习 四.使用scala进行spark的wordcount练习 五.基于排序 ...

  3. Spark Streaming的wordcount案例

    之前测试的一些spark案例都是采用离线处理,spark streaming的流处理一样可以运行经典的wordcount. 基本环境: spark-2.0.0 scala-2.11.0 IDEA-15 ...

  4. Spark学习之wordcount程序

    实例代码: import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.ap ...

  5. 006 Spark中的wordcount以及TopK的程序编写

    1.启动 启动HDFS 启动spark的local模式./spark-shell 2.知识点 textFile: def textFile( path: String, minPartitions: ...

  6. 在Spark上运行WordCount程序

    1.编写程序代码如下: Wordcount.scala package Wordcount import org.apache.spark.SparkConf import org.apache.sp ...

  7. 提交任务到spark(以wordcount为例)

    1.首先需要搭建好hadoop+spark环境,并保证服务正常.本文以wordcount为例. 2.创建源文件,即输入源.hello.txt文件,内容如下: tom jerry henry jim s ...

  8. 50、Spark Streaming实时wordcount程序开发

    一.java版本 package cn.spark.study.streaming; import java.util.Arrays; import org.apache.spark.SparkCon ...

  9. Spark中的Wordcount

    目录 通过scala语言基于local编写spark的Wordcount 基于yarn去调度WordCount 通过scala语言基于local编写spark的Wordcount import org ...

随机推荐

  1. C/C++内存分配区

    一.起源 C++内存分成5个区,分别是堆.栈.自由存储区.全局/静态存储区和常量存储区. 但这个自由存储区这么一听还是模模糊糊的,和堆好像是一样的,还有同学说起这个问题.   二.个人理解 关于自由存 ...

  2. 用JSON-server模拟REST API(一) 安装运行

    用JSON-server模拟REST API(一) 安装运行 在开发过程中,前后端不论是否分离,接口多半是滞后于页面开发的.所以建立一个REST风格的API接口,给前端页面提供虚拟的数据,是非常有必要 ...

  3. POJ 1191 棋盘分割

    棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11213 Accepted: 3951 Description 将一个 ...

  4. js矩阵菜单或3D立体预览图片效果

    js矩阵菜单或3D立体预览图片效果 下载地址: http://files.cnblogs.com/elves/js%E7%9F%A9%E9%98%B5%E8%8F%9C%E5%8D%95%E6%88% ...

  5. 第16章 使用Squid部署代理缓存服务

    章节概述: 本章节从代理缓存服务的工作原理开始讲起,让读者能够清晰理解正向代理(普通模式.透明模式)与反向代理的作用. 正确的使用Squid服务程序部署代理缓存服务可以有效提升访问静态资源的效率,降低 ...

  6. 在rails下新建表

    (文章都是从我的个人主页上粘贴过来的,大家也可以访问我的主页 www.iwangzheng.com) 今天需要新建表,以下是建表语句 rails generate scaffold users ema ...

  7. linux zookeeper 原理详解

    http://cailin.iteye.com/blog/2014486  直接打开此链接即可 --------------------------------------------------   ...

  8. Mysql函数集合

    Mysql提供了很多函数 提供的常用函数集合 一.数学函数 ABS(x) 返回x的绝对值 BIN(x) 返回x的二进制(OCT返回八进制,HEX返回十六进制) CEILING(x) 返回大于x的最小整 ...

  9. 代码风格与树形DP

    Streaming很惨,不过因为比赛之间没有提交过就没掉(或掉了)rating.第二题是一个树形DP,但是我都在想第一题了,简直作死. 看着神犇的代码我也是醉了...各种宏,真是好好写会死系列. 看到 ...

  10. 1-2+3-4+5-6+7......+n的几种实现

    本文的内容本身来自一个名校计算机生的一次面试经历,呵呵,没错,你猜对了,肯定 不是我 个人很喜欢这两道题,可能题目原本不止两道,当然,我这里这分析我很喜欢的两道. 1.写一个函数计算当参数为n(n很大 ...