Description

 

It's commonly known that the Dutch have invented copper-wire. Two Dutch men were fighting over a nickel, which was made of copper. They were both so eager to get it and the fighting was so fierce, they stretched the coin to great length and thus created copper-wire.

Not commonly known is that the fighting started, after the two Dutch tried to divide a bag with coins between the two of them. The contents of the bag appeared not to be equally divisible. The Dutch of the past couldn't stand the fact that a division should favour one of them and they always wanted a fair share to the very last cent. Nowadays fighting over a single cent will not be seen anymore, but being capable of making an equal division as fair as possible is something that will remain important forever...

That's what this whole problem is about. Not everyone is capable of seeing instantly what's the most fair division of a bag of coins between two persons. Your help is asked to solve this problem.

Given a bag with a maximum of 100 coins, determine the most fair division between two persons. This means that the difference between the amount each person obtains should be minimised. The value of a coin varies from 1 cent to 500 cents. It's not allowed to split a single coin.

Input

A line with the number of problems n, followed by n times:

  • a line with a non negative integer m () indicating the number of coins in the bag
  • a line with m numbers separated by one space, each number indicates the value of a coin.

Output

The output consists of n lines. Each line contains the minimal positive difference between the amount the two persons obtain when they divide the coins from the corresponding bag.

Sample Input

2
3
2 3 5
4
1 2 4 6

Sample Output

0
1

dp题,dp[i]的只有 0和1,0表示不能组成钱数i,1表示可以。转移方程:if(dp[i]) dp[j+coin[i]]=1; 这样把所有的可能组成结果找出来,

然后从sum/2向下找(向上也行),第一个找到的就是所求的结果,表示某一个人能过拿到的钱数,然后进行进一步计算。

#include<bits/stdc++.h>
using namespace std;
int dp[*+];
int main()
{
int n;
cin>>n;
int coin[];
while (n--)
{
memset(dp,,sizeof(dp));
long long int sum=;
int m;
cin>>m;
for(int i=;i<m;i++)
{
cin>>coin[i];
sum+=coin[i];
}
dp[]=;
for(int i=;i<m;i++)
{
for(int j=sum;j>=;j--)
if(dp[j])
dp[j+coin[i]]=;
}
int j=sum/;
while(!dp[j]) j--;
printf("%d\n",abs(sum-*j)); }
return ;
}

uva 562的更多相关文章

  1. UVA 562(01背包)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=114&page=s ...

  2. UVA 562 Dividing coins --01背包的变形

    01背包的变形. 先算出硬币面值的总和,然后此题变成求背包容量为V=sum/2时,能装的最多的硬币,然后将剩余的面值和它相减取一个绝对值就是最小的差值. 代码: #include <iostre ...

  3. UVA 562 Dividing coins (01背包)

    题意:给你n个硬币,和n个硬币的面值.要求尽可能地平均分配成A,B两份,使得A,B之间的差最小,输出其绝对值.思路:将n个硬币的总价值累加得到sum,   A,B其中必有一人获得的钱小于等于sum/2 ...

  4. UVA 562 Dividing coins

    题目描述:给出一些不同面值的硬币,每个硬币只有一个.将这些硬币分成两堆,并且两堆硬币的面值和尽可能接近. 分析:将所有能够取到的面值数标记出来,然后选择最接近sum/2的两个面值 状态表示:d[j]表 ...

  5. UVA 562 Dividing coins(dp + 01背包)

    Dividing coins It's commonly known that the Dutch have invented copper-wire. Two Dutch men were figh ...

  6. UVA 562 Dividing coins (01背包)

    //平分硬币问题 //对sum/2进行01背包,sum-2*dp[sum/2] #include <iostream> #include <cstring> #include ...

  7. UVa 562 - Dividing coins 均分钱币 【01背包】

    题目链接:https://vjudge.net/contest/103424#problem/E 题目大意: 给你一堆硬币,让你分成两堆,分别给A,B两个人,求两人得到的最小差. 解题思路: 求解两人 ...

  8. UVA 562 Dividing coins【01背包 / 有一堆各种面值的硬币,将所有硬币分成两堆,使得两堆的总值之差尽可能小】

    It's commonly known that the Dutch have invented copper-wire. Two Dutch men were fighting over a nic ...

  9. UVA 562 Dividing coins 分硬币(01背包,简单变形)

    题意:一袋硬币两人分,要么公平分,要么不公平,如果能公平分,输出0,否则输出分成两半的最小差距. 思路:将提供的整袋钱的总价取一半来进行01背包,如果能分出出来,就是最佳分法.否则背包容量为一半总价的 ...

随机推荐

  1. javascript仿天猫加入购物车动画效果

    javascript仿天猫加入购物车动画效果   注意:首先需要声明的是:代码原思路不是我写的,是在网上找的这种效果,自己使用代码封装了下而已:代码中都有注释,我们最主要的是理解抛物线的思路及在工作中 ...

  2. 简单聊下IO复用

    没图,不分析API Java中IO API的发展:Socket -> SocketChannel -> AsynchronousSocketChannelServerSocket -> ...

  3. Marriage Ceremonies(状态压缩dp)

     Marriage Ceremonies Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  4. Toast工具类,Android中不用再每次都写烦人的Toast了

    package com.zhanggeng.contact.tools; /** * Toasttool can make you use Toast more easy ; * * @author ...

  5. Android 中this、 getApplicationContext()、getApplication()之间的区别

    this:代表当前,在Activity当中就是代表当前的Activity,换句话说就是Activity.this在Activity当中可以缩写为this. getApplicationContext( ...

  6. vimcommandfilepatchcmdfold VIM技巧之分隔窗口 一级精华

    VIM技巧之分隔窗口 分类: 技术2010-07-08 09:57 754人阅读 评论(1) 收藏 举报   同时显示两个不同的文件, 或者同时查看同一个文件的两个不同位置, 或者是同步显示两个文件的 ...

  7. Coursera台大机器学习技法课程笔记03-Kernel Support Vector Machine

    这一节讲的是核化的SVM,Andrew Ng的那篇讲义也讲过,讲的也不错. 首先讲的是kernel trick,为了简化将低维特征映射高维特征后的计算,使用了核技巧.讲义中还讲了核函数的判定,即什么样 ...

  8. Coursera台大机器学习课程笔记3 – 机器学习的分类和机器学习的可能性

    第三讲比较简单,参考:http://www.cnblogs.com/HappyAngel/p/3466527.html 第四讲很抽象,尤其是第四个视频,目的仍然是为了证明机器学习是可能的,不过这个博主 ...

  9. 【Hadoop】Hive HSQ 使用 && 自定义HQL函数

    4 HQL 4.1 官网 4.1.1 https://cwiki.apache.org/confluence/display/Hive/LanguageManual 4.1.2 性能调优 4.1.2. ...

  10. SharePoint 2010 隐藏快速启动栏之使用内容编辑器webpart

    SharePoint 2010 自带的webpart里有一个叫内容编辑,在媒体和内容分类里面: 将其添加到页面后效果: 点击用于添加新内容,此时注意Ribbon菜单中的变化: 这里可以看到,你可以插入 ...