#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define M 3 //方阵的行数 列数
#define ε0 0.00000001//ε0为要求的精度
#define N 100000//最大迭代次数 //函数预声明
void printMatrix(double a[][], int m, int n);//矩阵的打印
void printVector(double a[], int m);//向量的打印
double dotVector(double a[], double b[], int m);//两个一维向量之积,结果为一个数
void dotMatrVect(double a[][], double yk0[], double uk1[], int m);//矩阵和向量点积u=a.*y,yk0对应于书上y(k-1)
void unitVector(double a[], int η, int m);//向量的单位化
double relaError(double lamada1, double lamada2);//计算相对误差 //主函数
int main(void)
{
double a[M][M] = { { , -, }, { -, -, }, { -, -, } };//待求特征值和特征向量的矩阵
double uk0[M] = { 1.0, 0.0, 0.0 };//迭代向量
double uk1[M] = { 0.0, 0.0, 0.0 };//迭代向量
double β0 = 0.0;//β(k-1)
double β1 = 0.0;//βk
double η0 = 0.0;//向量u(k-1)的二范数
double ε = 0.0;//计算的精度
printf("待求特征值和特征向量的矩阵A:\n");
printMatrix(a, M, M);
printf("\n");
printf("初始向量u0:\n");
printVector(uk0, M);
printf("\n");
printf("第几次计算\t\t uk\t\t\t\t yk\t\t βk\n");
for (int i = ; i < N; i++)
{
printf("%d\t", i);//***打印计算次数i
printVector(uk0, M);//***打印uk
printf("|");//***打印分隔
η0 = sqrt(dotVector(uk0, uk0, M));//初始向量u0的2范数
unitVector(uk0, η0, M);//将初始向量u0单位化作为y(k-1)也就是yk0
printVector(uk0, M); //***打印单位化后的uk0,也就是y(k-1)
dotMatrVect(a, uk0, uk1, M);//uk1 = A.*yk0;
printf("|");//***打印分隔
β1 = dotVector(uk0, uk1, M);//β1=y(k-1).*uk1
if (i>)
{
printf("%lf ", β1);//***打印βk
}
printf("\n");
ε = relaError(β0, β1);
//判断是否收敛
if (ε < ε0) //若收敛
{
printf("收敛\n");
break;
}
else //若不收敛,则变量交换 uk0=uk1;
{
//double tem = 0.0;
for (int q = ; q < M; q++)
{
//uk0[q] = uk1[q];
//tem = uk0[q];
uk0[q] = uk1[q];
uk1[q] = 0.0;//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!
}
β0 = β1;
}
} system("pause");
} //函数具体执行 //矩阵的打印
void printMatrix(double a[][M], int m, int n)
{
for (int i = ; i<m; i++)
{
for (int j = ; j<n; j++)
{
printf("%lf ", a[i][j]);
}
printf("\n");
}
}
//向量的打印
void printVector(double a[], int m)
{
for (int i = ; i < m; i++)
{
printf("%lf ", a[i]);
}
}
//两个一维向量之积
double dotVector(double a[], double b[], int m)
{
double dotsum = 0.0;
for (int i = ; i < m; i++)
{
dotsum = dotsum + a[i] * b[i];
}
return(dotsum);
}
//矩阵和向量点积u=a.*y,yk0对应于书上y(k-1)
void dotMatrVect(double a[][M], double yk0[], double uk1[], int m)
{
double a1, b, c;
for (int i = ; i < m; i++)
{
uk1[i] = ;//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!
for (int j = ; j < m; j++)
{
uk1[i] = uk1[i] + a[i][j] * yk0[j];//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!!!!
a1 = a[i][j];
b = yk0[j];
c = uk1[i];
//printf("a[%d][%d]=%lf\n",i,j,a[i][j]);
} }
//printVector(uk1, 3);
}
//向量的单位化
void unitVector(double a[], int η, int m)
{
for (int i = ; i < m; i++)
{
a[i] = a[i] / η;
}
}
//计算误差
double relaError(double β1, double β2)
{
double ε;
ε = fabs(β2 - β1) / fabs(β2);
return ε;
}

为啥上面的总是算的不是太精确呢??

奥,因为二范数取的是int类型;

 #include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define M 3 //方阵的行数 列数
#define ε0 0.00000001//ε0为要求的精度
#define N 100000//最大迭代次数 //函数预声明
void printMatrix(double a[][], int m, int n);//矩阵的打印
void printVector(double a[], int m);//向量的打印
double dotVector(double a[], double b[], int m);//两个一维向量之积,结果为一个数
void dotMatrVect(double a[][], double yk0[], double uk1[], int m);//矩阵和向量点积u=a.*y,yk0对应于书上y(k-1)
void unitVector(double a[], double η, int m);//向量的单位化
double relaError(double lamada1, double lamada2);//计算相对误差 //主函数
int main(void)
{
double a[M][M] = { { , -, }, { -, -, }, { -, -, } };//待求特征值和特征向量的矩阵
double uk0[M] = { 2.0, 1.0, 6.0 };//迭代向量
double uk1[M] = { 0.0, 0.0, 0.0 };//迭代向量
double β0 = 0.0;//β(k-1)
double β1 = 0.0;//βk
double η0 = 0.0;//向量u(k-1)的二范数
double ε = 0.0;//计算的精度
printf("待求特征值和特征向量的矩阵A:\n");
printMatrix(a, M, M);
printf("\n");
printf("初始向量u0:\n");
printVector(uk0, M);
printf("\n");
printf("第几次计算\t\t uk\t\t\t\t yk\t\t βk\n");
for (int i = ; i < N; i++)
{
printf("%d\t", i);//***打印计算次数i
printVector(uk0, M);//***打印uk
printf("|");//***打印分隔
η0 = sqrt(dotVector(uk0, uk0, M));//初始向量u0的2范数
unitVector(uk0, η0, M);//将初始向量u0单位化作为y(k-1)也就是yk0
printVector(uk0, M); //***打印单位化后的uk0,也就是y(k-1)
dotMatrVect(a, uk0, uk1, M);//uk1 = A.*yk0;
printf("|");//***打印分隔
β1 = dotVector(uk0, uk1, M);//β1=y(k-1).*uk1
if (i>)
{
printf("%lf ", β1);//***打印βk
}
printf("\n");
ε = relaError(β0, β1);
//判断是否收敛
if (ε < ε0) //若收敛
{
printf("收敛\n");
break;
}
else //若不收敛,则变量交换 uk0=uk1;
{
//double tem = 0.0;
for (int q = ; q < M; q++)
{
//uk0[q] = uk1[q];
//tem = uk0[q];
uk0[q] = uk1[q];
uk1[q] = 0.0;//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!
}
β0 = β1;
}
} system("pause");
} //函数具体执行 //矩阵的打印
void printMatrix(double a[][M], int m, int n)
{
for (int i = ; i<m; i++)
{
for (int j = ; j<n; j++)
{
printf("%lf ", a[i][j]);
}
printf("\n");
}
}
//向量的打印
void printVector(double a[], int m)
{
for (int i = ; i < m; i++)
{
printf("%lf ", a[i]);
}
}
//两个一维向量之积
double dotVector(double a[], double b[], int m)
{
double dotsum = 0.0;
for (int i = ; i < m; i++)
{
dotsum = dotsum + a[i] * b[i];
}
return(dotsum);
}
//矩阵和向量点积u=a.*y,yk0对应于书上y(k-1)
void dotMatrVect(double a[][M], double yk0[], double uk1[], int m)
{
double a1, b, c;
for (int i = ; i < m; i++)
{
uk1[i] = ;//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!
for (int j = ; j < m; j++)
{
uk1[i] = uk1[i] + a[i][j] * yk0[j];//在第二次使用前一定把uk1[i]的所有元素归零!!!!!!!!!
a1 = a[i][j];
b = yk0[j];
c = uk1[i];
//printf("a[%d][%d]=%lf\n",i,j,a[i][j]);
} }
//printVector(uk1, 3);
}
//向量的单位化
void unitVector(double a[], double η, int m)
{
for (int i = ; i < m; i++)
{
a[i] = a[i] / η;
}
}
//计算误差
double relaError(double β1, double β2)
{
double ε;
ε = fabs(β2 - β1) / fabs(β2);
return ε;
}

精确结果是 绝对值最大的特征值为45,对应的特征向量为(0,-0.5,-1)

c语言计算矩阵特征值和特征向量-1(幂法)的更多相关文章

  1. 矩阵的特征值和特征向量的雅克比算法C/C++实现

    矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代 ...

  2. 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量

    [前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...

  3. (原)使用mkl计算特征值和特征向量

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5585271.html 参考文档:mkl官方文档 lapack_int LAPACKE_sgeev(in ...

  4. 利用python做矩阵的简单运算(行列式、特征值、特征向量等的求解)

    import numpy as np lis = np.mat([[1,2,3],[3,4,5],[4,5,6]]) print(np.linalg.inv(lis)) # 求矩阵的逆矩阵 [[-1. ...

  5. python计算平面的法向-利用协方差矩阵求解特征值和特征向量

    Obvious,最小特征值对应的特征向量为平面的法向 这个问题还有个关键是通过python求协方差矩阵的特征值和特征向量,np.linalg.eig()方法直接返回了特征值的向量和特征向量的矩阵 sc ...

  6. java语言编写矩阵的四则运算

    题目要求如下: 设计程序实现矩阵的四则运算 设计要求: (1) 实现矩阵的四则运算. (2) 考虑实现带变元的矩阵计算. (3)考虑实现矩阵的特征值和特征向量的计算. 我使用java语言写的 目录结构 ...

  7. opencv学习之路(38)、Mat像素统计基础——均值,标准差,协方差;特征值,特征向量

    本文部分内容转自 https://www.cnblogs.com/chaosimple/p/3182157.html 一.统计学概念 二.为什么需要协方差 三.协方差矩阵 注:上述协方差矩阵还需要除以 ...

  8. eig()函数求特征值、特征向量、归一化

    在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有 5种:(1) E=eig(A):求矩阵A的全部特征值,构成向量E. 想求最大特征值用:max(eig(A))就好了 ...

  9. Python与矩阵论——特征值与特征向量

    Python计算特征值与特征向量案例 例子1 import numpy as np A = np.array([[3,-1],[-1,3]]) print('打印A:\n{}'.format(A)) ...

随机推荐

  1. windos系统定时执行批处理文件(bat文件)

    Win7怎么设置定时自动执行任务? 点击开始按钮,依次选择打开“所有程序—附件—系统工具”,找到“任务计划程序”即可打开Win7系统的任务计划设置面板.也可以点击Win7开始按钮,在多功能搜索框中输入 ...

  2. Strus2第一次课:dom4j操作xml

    先从底层的xml操作技术记录: 当我们新建一个项目,什么架包都没加入的时候,java提供了 org.w3c.dom给我们操作xml里面的元素 import org.w3c.dom.Document; ...

  3. 《C++ Primer》学习笔记【第二部分 C++标准库】

    第8章 IO库 IO对象不能复制,即1.IO对象不能存储在vector或其他容器中   2.如果需要传递或返回IO对象,必须传递或返回指向该对象的指针或引用. 一般情况下,如果要传递IO对象以便对它进 ...

  4. css动画属性性能

    性能主要表现:流量.功耗与流畅度 在现有的前端动画体系中,通常有两种模式:JS动画与CSS3动画. JS动画是通过JS动态改写样式实现动画能力的一种方案,在PC端兼容低端浏览器中不失为一种推荐方案. ...

  5. Oracle 新增删除账户

    新增用户: create user test identified by 123456;grant dba,connect,resource to test; 删除账户: drop user xxx ...

  6. 支撑双十一的,不仅仅是AliSQL,也不仅仅是Oceanbase

    全棉时代,作为稳健医疗集团的全资子公司,传承了稳健医疗集团在医用棉制品行业20年的专业技术和生产经验,以其独创的 "全棉水刺无纺布专利工艺"为核心技术载体,成功实现了医用产品向民用 ...

  7. medoo–高效的轻量级PHP数据库操作类

    网址:http://medoo.lvtao.net/ /*medoo.php*/ class medoo { protected $database_type = ‘mysql’; protected ...

  8. DFA敏感词过滤

    import java.io.UnsupportedEncodingException; import java.nio.ByteBuffer; import java.util.ArrayList; ...

  9. DOM操作方法的简单归纳

    (1)要在每个匹配的元素中插入新元素,使用: .append() .appendTo()   .prepend() .prependTo() (2)要在每个匹配的元素相邻的位置上插入新元素,使用: . ...

  10. 【翻译】configuration changes与handler.post

    原文地址 http://corner.squareup.com/2013/12/android-main-thread-2.html 在前一部分里面previous part ,我们深入挖掘了 loo ...