MATLAB中FFT的使用方法
MATLAB中FFT的使用方法
说明:以下资源来源于《数字信号处理的MATLAB实现》万永革主编
一.调用方法
X=FFT(x);
X=FFT(x,N);
x=IFFT(X);
x=IFFT(X,N)
用MATLAB进行谱分析时注意:
(1)函数FFT返回值的数据结构具有对称性。
例:
N=8;
n=0:N-1;
xn=[4 3 2 6 7 8 9 0];
Xk=fft(xn)
→
Xk =
39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929i
Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。
(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。
二.FFT应用举例
例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。
clf;
fs=100;N=128; %采样频率和数据点数
n=0:N-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号
y=fft(x,N); %对信号进行快速Fourier变换
mag=abs(y); %求得Fourier变换后的振幅
f=n*fs/N; %频率序列
subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=128');grid on;
subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=128');grid on;
%对信号采样数据为1024点的处理
fs=100;N=1024;n=0:N-1;t=n/fs;
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号
y=fft(x,N); %对信号进行快速Fourier变换
mag=abs(y); %求取Fourier变换的振幅
f=n*fs/N;
subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=1024');grid on;
subplot(2,2,4)
plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=1024');grid on;
运行结果:
fs=100Hz,Nyquist频率为fs/2=50Hz。整个频谱图是以Nyquist频率为对称轴的。并且可以明显识别出信号中含有两种频率成分:15Hz和40Hz。由此可以知道FFT变换数据的对称性。因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内的福频特性。若没有给出采样频率和采样间隔,则分析通常对归一化频率0~1进行。另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表现值,但在同一幅图中,40Hz与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。为了与真实振幅对应,需要将变换后结果乘以2除以N。
例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100Hz,绘制:
(1)数据个数N=32,FFT所用的采样点数NFFT=32;
(2)N=32,NFFT=128;
(3)N=136,NFFT=128;
(4)N=136,NFFT=512。
clf;fs=100; %采样频率
Ndata=32; %数据长度
N=32; %FFT的数据长度
n=0:Ndata-1;t=n/fs; %数据对应的时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %时间域信号
y=fft(x,N); %信号的Fourier变换
mag=abs(y); %求取振幅
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,1),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=32 Nfft=32');grid on;
Ndata=32; %数据个数
N=128; %FFT采用的数据长度
n=0:Ndata-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=32 Nfft=128');grid on;
Ndata=136; %数据个数
N=128; %FFT采用的数据个数
n=0:Ndata-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,3),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=136 Nfft=128');grid on;
Ndata=136; %数据个数
N=512; %FFT所用的数据个数
n=0:Ndata-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,4),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=136 Nfft=512');grid on;

结论:
(1)当数据个数和FFT采用的数据个数均为32时,频率分辨率较低,但没有由于添零而导致的其他频率成分。
(2)由于在时间域内信号加零,致使振幅谱中出现很多其他成分,这是加零造成的。其振幅由于加了多个零而明显减小。
(3)FFT程序将数据截断,这时分辨率较高。
(4)也是在数据的末尾补零,但由于含有信号的数据个数足够多,FFT振幅谱也基本不受影响。
对信号进行频谱分析时,数据样本应有足够的长度,一般FFT程序中所用数据点数与原含有信号数据点数相同,这样的频谱图具有较高的质量,可减小因补零或截断而产生的影响。
例3:x=cos(2*pi*0.24*n)+cos(2*pi*0.26*n)
(1)数据点过少,几乎无法看出有关信号频谱的详细信息;
(2)中间的图是将x(n)补90个零,幅度频谱的数据相当密,称为高密度频谱图。但从图中很难看出信号的频谱成分。
(3)信号的有效数据很长,可以清楚地看出信号的频率成分,一个是0.24Hz,一个是0.26Hz,称为高分辨率频谱。
可见,采样数据过少,运用FFT变换不能分辨出其中的频率成分。添加零后可增加频谱中的数据个数,谱的密度增高了,但仍不能分辨其中的频率成分,即谱的分辨率没有提高。只有数据点数足够多时才能分辨其中的频率成分。
MATLAB中FFT的使用方法的更多相关文章
- [转载]MATLAB中FFT的使用方法
http://blog.163.com/fei_lai_feng/blog/static/9289962200971751114547/ 说明:以下资源来源于<数字信号处理的MATLAB实现&g ...
- MATLAB中fft函数的正确使用方法
问题来源:在阅读莱昂斯的<数字信号处理>第三章离散傅里叶变换时,试图验证实数偶对称信号的傅里叶变换实部为偶对称的且虚部为零.验证失败.验证信号为矩形信号,结果显示虚部是不为零且最大幅值等于 ...
- [转载]Matlab中fft与fftshift命令的小结与分析
http://blog.sina.com.cn/s/blog_68f3a4510100qvp1.html 注:转载请注明出处——by author. 我们知道Fourier分析是信号处理里很重要的技术 ...
- matlab中fft快速傅里叶变换
视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...
- matlab 中fft的用法
一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性. 例:N=8;n=0:N- ...
- paper 3:matlab中save,load使用方法小结
功能描述]存储文件[软件界面]MATLAB->File->Save Workspace As将变量存入硬盘中指定路径.[函数用法] save:该函数将所有workspace中变量用二进制格 ...
- matlab中prod的使用方法
B = prod(A) 将A矩阵不同维的元素的乘积返回到矩阵B. 如果A是向量,prod(A)返回A向量的乘积.如果A是矩阵,prod(A)返回A每一列元素的乘积并组成一个行向量B. B = prod ...
- 2015.06.11,技术,关于Matlab中的Jbtest检验
总体分布的正态性检验一般采取Jarque-Bera检验方法. 1. JBTest检验的定义: 在统计学中,Jarque-Bera检验是对样本数据是否具有符合正态分布的偏度和峰度的拟合优度的检验.该检验 ...
- Matlab中函数定义方法
Matlab自定义函数的六种方法 n1.函数文件+调用函数(命令)文件:需单独定义一个自定义函数的M文件: n2.函数文件+子函数:定义一个具有多个自定义函数的M文件: n3.Inline:无需M文件 ...
随机推荐
- JS OOP编程
//父类 function BaseFun() { var hello = "HelloWorld"; this.HelloPublic = "Hello--World& ...
- shell中三种引号的用法
1.单引号 所见即所得 例如:var=123 var2='${var}123' echo var2 var2结果为${var}123 2.双引号 输出引号中的内容,若存在命令.变量等,会先执行命令解析 ...
- 调试多线程 & 查死锁的bug & gcore命令 & gdb对多线程的调试 & gcore & pstack & 调试常用命令
gdb thread apply all bt 如果你发现有那么几个栈停在 pthread_wait 或者类似调用上,大致就可以得出结论:就是它们几个儿女情长,耽误了整个进程. 注意gdb的版本要高于 ...
- MySQL存储IP地址操作
数据库数据表创建语法: DROP TABLE IF EXISTS `admin`; CREATE TABLE IF NOT EXISTS `admin`( `adminid` INT UNSIGNED ...
- iOS开发 二维码生成
基于libqrencode的二维码生成 + (void)drawQRCode:(QRcode *)code context:(CGContextRef)ctx size:(CGFloat)size { ...
- caroufredsel 参数
caroufredsel 参数 参数列表:参数名 默认值 说明circular true 循环模式,true为无限循环,false为单轮循环.infinite ...
- 可以结合react的ui组件
https://ant.design/components/switch-cn/
- ExtJS Grid导出excel文件
ExtJS Grid导出excel文件, 需下载POI:链接:http://pan.baidu.com/s/1i3lkPhF 密码:rqbg 1.将Grid表格数据连同表格列名传到后台 2.后台导出e ...
- Discuz! X3.1直接进入云平台列表的方法
Discuz! X3.1已经改版,后台不能直接进云平台列表,不方便操作,操作云平台服务时,大家可以这样操作: 1.登录后台:2.访问域名进入云平台列表http://你域名/admin.php?fram ...
- C#如果把A.new()编译成new A()
缘由 对于初次接触某个第三方库的C#开发者,假如要调用里面一个方法,发现需要一个A类型的实例作为参数,怎么获得这个实例呢? 我想大多数人会先尝试new A吧: 如果没有,可能会尝试输入A.看看有没可能 ...