【cf932E】E. Team Work(第二类斯特林数)
题意:
求\(\displaystyle \sum_{i=0}^n{n\choose i}i^k,n\leq 10^9,k\leq 5000\)。
思路:
将\(i^k\)用第二类斯特林数展开,推导方式如:传送门。
但这个题要简单一些,不用\(NTT\)预处理,直接递推就行。
详见代码:
/*
* Author: heyuhhh
* Created Time: 2019/12/12 10:42:37
*/
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <iomanip>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 5005, MOD = 1e9 + 7;
int n, k;
int fac[N], c[N], two[N];
int s[N][N];
ll qpow(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
}
void run(){
cin >> n >> k;
fac[0] = 1;
for(int i = 1; i < N; i++) fac[i] = 1ll * fac[i - 1] * i % MOD;
c[0] = 1;
for(int i = 1; i <= k; i++) c[i] = 1ll * c[i - 1] * (n - i + 1) % MOD * qpow(i, MOD - 2) % MOD;
two[0] = qpow(2, n);
int inv2 = qpow(2, MOD - 2);
for(int i = 1; i <= k; i++) two[i] = 1ll * two[i - 1] * inv2 % MOD;
s[0][0] = 1;
for(int i = 1; i < N; i++) {
for(int j = 1; j <= i; j++) {
s[i][j] = (1ll * j * s[i - 1][j] % MOD + s[i - 1][j - 1]) % MOD;
}
}
int ans = 0;
for(int i = 0; i <= k; i++) {
ans = (ans + 1ll * fac[i] * s[k][i] % MOD * c[i] % MOD * two[i] % MOD) % MOD;
}
cout << ans << '\n';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
run();
return 0;
}
【cf932E】E. Team Work(第二类斯特林数)的更多相关文章
- CF932E Team Work(第二类斯特林数)
题目 CF932E Team Work 前置:斯特林数\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ &\sum\limits_{i=1}^n C_ ...
- Codeforces 932 E Team Work ( 第二类斯特林数、下降阶乘幂、组合数学 )
题目链接 题意 : 其实就是要求 分析 : 先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?) 然后再一步步化简.使得最外层和 N 有关的 ∑ 划掉 这里有个技巧就是 将组合数的表达式放到一边. ...
- CF932E Team Work——第二类斯特林数
题解 n太大,而k比较小,可以O(k^2)做 想方设法争取把有关n的循环变成O(1)的式子 考虑用公式: 来替换i^k 原始的组合数C(n,i)一项,考虑能否和后面的系数分离开来,直接变成2^n处理. ...
- 【CF932E】Team Work(第二类斯特林数)
[CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...
- CF932E Team Work(第二类斯特林数)
传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...
- Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数
题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
- 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...
- HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...
随机推荐
- Selenium 4.0 Alpha更新日志
早在2018年8月,整个测试自动化社区就发生了一件重大新闻:Selenium的创始成员Simon Stewart在班加罗尔Selenium会议上正式确认了Selenium 4的发布日期和一些重要更新. ...
- NAT(地址解析协议)
第七部分,也是本次更新的最后一部分,NAT(Network Address Translation),即地址解析协议.通俗理解,地址解析协议就是当一个单位只拥有一个公网ip地址,当内网中的主机想要访问 ...
- 孟文静浅谈AG百家庄闲技巧,下三路的运用以及三株路的正反打法
关于三珠路的各种打法,这里我做个详细的讲解,如想了解更多打法可+qq<738不要字4633>或关注VX公众号<孟文静1> 三珠路的打法源于叶汉,叶汉的打法是——三珠路打反 先看 ...
- 剑指Offer-41.和为S的连续正数序列(C++/Java)
题目: 小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100.但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数).没多久,他就 ...
- HTTP 错误 500.19 - Internal Server Error 错误代码 0x80070005 由于权限不足而无法读取配置文件
HTTP 错误 500.19 - Internal Server Error 无法访问请求的页面,因为该页的相关配置数据无效. 模块 IIS Web Core 通知 未知 处理程序 尚未确定 错误代码 ...
- hibernate mysql中文检出无效
在学习ssh框架是发现,检索条件是英文时,sql就能按照条件过滤出数据,当我换成中文是,检索出来的数据就是空,最后发现没有设置数据库连接url的编码格式 1.数据库编码 COLLATE='utf8_g ...
- 一线大厂Java面试必问的2大类Tomcat调优
一.前言 最近整理了 Tomcat 调优这块,基本上面试必问,于是就花了点时间去搜集一下 Tomcat 调优都调了些什么,先记录一下调优手段,更多详细的原理和实现以后用到时候再来补充记录,下面就来介绍 ...
- 6种微服务RPC框架,你知道几个?
开源 RPC 框架有哪些呢? 一类是跟某种特定语言平台绑定的,另一类是与语言无关即跨语言平台的. 跟语言平台绑定的开源 RPC 框架主要有下面几种. Dubbo:国内最早开源的 RPC 框架,由阿里巴 ...
- 获取本地计算机名称和Ip地址
using System.Net; Dns.GetHostName();//获取本地计算机主机名 IPAddress[] IP = Dns.GetHostAddresses(Dns.GetHostNa ...
- Instrument API介绍
1. Instrumentation介绍 JVMTI(JVM Tool Interface)是 Java 虚拟机所提供的 native 编程接口,是 JVMPI(Java Virtual Machi ...