前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

作者: Python高校

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

http://note.youdao.com/noteshare?id=3054cce4add8a909e784ad934f956cef

项目描述

利用马萨诸塞州波士顿郊区的房屋信息数据训练和测试一个模型,并对模型的性能和预测能力进行测试;

项目分析

数据集字段解释:

  • RM: 住宅平均房间数量;

  • LSTAT: 区域中被认为是低收入阶层的比率;

  • PTRATIO: 镇上学生与教师数量比例;

  • MEDV: 房屋的中值价格(目标特征,即我们要预测的值);

其实现在回过头来看,前三个特征应该都是挖掘后的组合特征,比如RM,通常在原始数据中会分为多个特征:一楼房间、二楼房间、厨房、卧室个数、地下室房间等等,这里应该是为了教学简单化了;

MEDV为我们要预测的值,属于回归问题,另外数据集不大(不到500个数据点),小数据集上的回归问题,现在的我初步考虑会用SVM,稍后让我们看看当时的选择;

Step 1 导入数据

注意点:

1、如果数据在多个csv中(比如很多销售项目中,销售数据和店铺数据是分开两个csv的,类似数据库的两张表),这里一般要连接起来; 2、训练数据和测试数据连接起来,这是为了后续的数据处理的一致,否则训练模型时会有问题(比如用训练数据训练的模型,预测测试数据时报错维度不一致); 3、观察下数据量,数据量对于后续选择算法、可视化方法等有比较大的影响,所以一般会看一下; 4、pandas内存优化,这一点项目中目前没有,但是我最近的项目有用到,简单说一下,通过对特征字段的数据类型向下转换(比如int64转为int8)降低对内存的使用,这里很重要,数据量大时很容易撑爆个人电脑的内存存储;

上代码:

 # 载入波士顿房屋的数据集
data = pd.read_csv('housing.csv')
prices = data['MEDV']
features = data.drop('MEDV', axis = 1)
# 完成

print"Boston housing dataset has {} data points with {} variables each.".format(*data.shape)

tep 2 分析数据

加载数据后,不要直接就急匆匆的上各种处理手段,加各种模型,先慢一点,对数据进行一个初步的了解,了解其各个特征的统计值、分布情况、与目标特征的关系,最好进行可视化,这样会看到很多意料之外的东西;

基础统计运算

统计运算用于了解某个特征的整体取值情况,它的最大最小值,平均值中位数,百分位数等等,这些都是最简单的对一个字段进行了解的手段;

上代码:

特征观察

这里主要考虑各个特征与目标之间的关系,比如是正相关还是负相关,通常都是通过对业务的了解而来的,这里就延伸出一个点,机器学习项目通常来说,对业务越了解,越容易得到好的效果,因为所谓的特征工程其实就是理解业务、深挖业务的过程;

比如这个问题中的三个特征:

  • RM:房间个数明显应该是与房价正相关的;

  • LSTAT:低收入比例一定程度上表示着这个社区的级别,因此应该是负相关;

  • PTRATIO:学生/教师比例越高,说明教育资源越紧缺,也应该是负相关;

上述这三个点,同样可以通过可视化的方式来验证,事实上也应该去验证而不是只靠主观猜想,有些情况下,主观感觉与客观事实是完全相反的,这里要注意;

Step 3 数据划分

为了验证模型的好坏,通常的做法是进行cv,即交叉验证,基本思路是将数据平均划分N块,取其中N-1块训练,并对另外1块做预测,并比对预测结果与实际结果,这个过程反复N次直到每一块都作为验证数据使用过;

上代码:

 # 提示:导入train_test_split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(features, prices, test_size=0.2, random_state=RANDOM_STATE)
print X_train.shape
print X_test.shape
print y_train.shape
print y_test.shape

Step 4 定义评价函数

这里主要是根据问题来定义,比如分类问题用的最多的是准确率(精确率、召回率也有使用,具体看业务场景中更重视什么),回归问题用RMSE(均方误差)等等,实际项目中根据业务特点经常会有需要去自定义评价函数的时候,这里就比较灵活;

Step 5 模型调优

通过GridSearch对模型参数进行网格组合搜索最优,注意这里要考虑数据量以及组合后的可能个数,避免运行时间过长哈。

上代码:

 from sklearn.model_selection importKFold,GridSearchCV
from sklearn.tree importDecisionTreeRegressor
from sklearn.metrics import make_scorer

def fit_model(X, y):
""" 基于输入数据 [X,y],利于网格搜索找到最优的决策树模型"""
cross_validator = KFold()
regressor = DecisionTreeRegressor()
params = {'max_depth':[1,2,3,4,5,6,7,8,9,10]}
scoring_fnc = make_scorer(performance_metric)

grid = GridSearchCV(estimator=regressor, param_grid=params, scoring=scoring_fnc,cv=cross_validator)

# 基于输入数据 [X,y],进行网格搜索
grid = grid.fit(X, y)
# 返回网格搜索后的最优模型
return grid.best_estimator_

可以看到当时项目中选择的是决策树模型,现在看,树模型在这种小数据集上其实是比较容易过拟合的,因此可以考虑用SVM代替,你也可以试试哈,我估计是SVM效果最好;

学习曲线

通过绘制分析学习曲线,可以对模型当前状态有一个基本了解,如下图:

可以看到,超参数max_depth为1和3时,明显训练分数过低,这说明此时模型有欠拟合的情况,而当max_depth为6和10时,明显训练分数和验证分析差距过大,说明出现了过拟合,因此我们初步可以猜测,最佳参数在3和6之间,即4,5中的一个,其他参数一样可以通过学习曲线来进行可视化分析,判断是欠拟合还是过拟合,再分别进行针对处理;

为了能早点买房,我用 Python 预测房价走势!的更多相关文章

  1. 基于Python预测股价

    ▌实现预测的Stocker工具 Stocker是一款用于探索股票情况的Python工具.一旦我们安装了所需的库(查看文档),我们可以在脚本的同一文件夹中启动一个Jupyter Notebook,并导入 ...

  2. 用Python预测双色球福利彩票中奖号码(请不要当真)

    前言 双色球是中国福利彩票的一种玩法. 红球一共6组,每组从1-33中抽取一个,六个互相不重复.然后蓝球是从1-16中抽取一个数字,这整个组成的双色球 python从零基础入门到实战 今天,我们就用P ...

  3. Python预测2020高考分数和录取情况可能是这样

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:打磨虾 “迟到”了一个月的高考终于要来了. 正好我得到了一份山东新高 ...

  4. Python预测2020高考分数和录取情况

    “迟到”了一个月的高考终于要来了. 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识. ...

  5. 我的Python书被台湾的出版社引进版权了,书的名字也更吸引人了

    我去年出了一本Python书,基于股票大数据分析的Python入门实战,在这本书里,我是用股票范例讲述Pythorn的爬虫,数据分析和机器学习知识点,如下是京东的连接. https://item.jd ...

  6. 80个Python练手项目列表

    80个Python练手项目列表   我若将死,给孩子留遗言,只留一句话:Repetition is the mother of all learning重复是学习之母.他们将来长大,学知识,技巧.爱情 ...

  7. daal4py 随机森林模型训练mnist并保存模型给C++ daal predict使用

    # daal4py Decision Forest Classification Training example Serialization import daal4py as d4p import ...

  8. Machine Learning in Action(1) K-近邻

    机器学习分两大类,有监督学习(supervised learning)和无监督学习(unsupervised learning).有监督学习又可分两类:分类(classification.)和回归(r ...

  9. R Seurat 单细胞处理pipline 代码

    options(stringsAsFactors = F ) rm(list = ls()) library(Seurat) library(dplyr) library(ggplot2) libra ...

随机推荐

  1. java8-CompleableFuture的使用1

    背景 硬件的极速发展,多核心CPU司空见惯:分布式的软件架构司空见惯: 功能API大多采用混聚的方式把基础服务的内容链接在一起,方便用户生活. 抛出了两个问题: 如何发挥多核能力: 切分大型任务,让每 ...

  2. Centos7 下 PHP 添加缺少的组件 sockets 和 openssl

    环境是 centos7 + nginx 1.14 + php 7.2.18,由于新增邮件发送功能,使用的是 socket 通讯的方式,需要开启 php 的 sockes 和 openssl 扩展 安装 ...

  3. 【实习第一天】odoo开发基础(一)

    管理权限 在项目中,有个security文件夹,其中的ir.model.access文件后面带4个参数.分别代表着读,写,创建,删除的操作 想要开启权限需要将其参数调成为1,反之为0.倘若不调整参数, ...

  4. ThinkPHP6框架的下载与安装

    thinkphp6发布也有一段时间了,相对来说比较稳定,是时候学习一下thinkphp6框架,提前学习,到正式发布的时候,可以直接拿来做正式的项目,先人一步.thinkPHP6.0在5.1的基础上对底 ...

  5. Shell—输入输出重定向

    大多数 UNIX 系统命令从你的终端接受输入并将所产生的输出发送回​​到您的终端.一个命令通常从一个叫标准输入的地方读取输入,默认情况下,这恰好是你的终端.同样,一个命令通常将其输出写入到标准输出,默 ...

  6. s3c2440裸机-时钟编程(一、2440时钟体系介绍)

    1.总线框架 下图是2440的总线框架,其中有AHB(Advanced High performance Bus)高速总线,APB(Advanced Peripheral Bus)外围总线. 不同总线 ...

  7. Mac打开Finder快捷键

    摘要:目前网络中较常见的打开Finder的方法有两种,要么是先进入桌面状态,再使用快捷键command + shift + c:要么是通过下载软件来设置打开Finder的快捷键.都过于繁琐,其实有很简 ...

  8. Python添加邮件附件并通过邮件发送测试报告

    import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText c ...

  9. 不依赖官方LibPack编译FreeCAD的一次尝试

    在Windows下编译FreeCAD,通常的方法是依赖官方提供的LibPack,但是只有vs2008, vs2012, vs2013等几个版本提供.比如现在感觉vs2017比较好用,可是没有官方Lib ...

  10. java-11-Stream优化并行流

      并行流    多线程    把一个内容分成多个数据块  不同线程分别处理每个数据块的流   串行流   单线程  一个线程处理所有数据   java8 对并行流优化  StreamAPI 通过pa ...