坐标下降法(coordinate descent method)求解LASSO推导

LASSO在尖点是singular的,因此传统的梯度下降法、牛顿法等无法使用。常用的求解算法有最小角回归法、coordinate descent method等。
由于coordinate descent method是相对较简单的做法,放在第一个介绍。

坐标下降法思想

坐标下降法基于的思想很简单,就是当面对最小化一个多元函数的问题时,我们每一次迭代的时候只改变一个目标变量的值。也就是固定其他变量不动,只在该变量的维度上寻找一个使函数最小的值。这种思想类似于贪心算法。

推导过程

定义Loss function为:
\[
\frac{1}{N}\sum_{i=1}^{N}(y_i-x_i^T\cdot \beta)
\]
其中,\(x_i\)是p·1维的向量,\(\beta\)是p·1维的向量。

Penalty为Lasso penalty:
\[
\sum_{j=1}^p|\beta_j|
\]
定义超参数为\(\lambda\)

目标函数为:
\[
L=\frac{1}{N}\sum_{i=1}^{N}(y_i-x_i^T\cdot \beta+\lambda\sum_{j=1}^p|\beta_j|)
\]
应用坐标下降法的思想,我们固定住\(x_k\ne x_j\)的变量,然后在每一轮迭代中只优化\(x_j\)。

可以采用的迭代顺序是从j=1依次到p进行迭代,然后再从j=1开始。

当固定住其他变量时,求object function的极小值就等价于求解一元LASSO的问题。
\[L=\frac{1}{N}\sum_{i=1}^{N}(r_i-\beta_jx_{ji})^2+\lambda \beta_j \tag{1}\]

其中,\(r_i=y_i-\sum_{k\ne j}x_{ik}\beta_k\),也就是只用其他变量拟合y的残差。

将式1稍微化简一下,可以得到:
\[
L=\beta_j^2\frac{\sum_{i=1}^{N}x_{ji}^2}{N}-2\beta_j\frac{\sum_{i=1}^{N}r_ix_{ji}}{N}+\frac{\sum_{i=1}^{N}r_i^2}{N}+\lambda{|\beta_j|}
\]
这是一个二次函数。由于涉及到绝对值,我们需要分两个区间讨论:\(\beta_j<0\)和\(\beta_j>0\)

相当于我们将\(\beta_j\)的取值划成了两个空间,分别讨论极值。最后的极值是把这两个空间的极值再取最小值。

  • 第一个区间, \(\beta_j>0\)
    可以观察到object function是一个开口向上二次函数,全局最小点在\(\beta_j=\frac{2\frac{\sum r_ix_i}{N}-\lambda}{2\sum x_i^2}{N}\)处取得。
    但是我们这时的定义域限制在 \(\beta_j>0\),因此需要分类讨论是否能取全局最小点:
    \[
    if (2\frac{\sum r_ix_i}{N}-\lambda>0):\\
    {\beta_j^{*}=\frac{2\frac{\sum r_ix_i}{N}-\lambda}{2\sum x_i^2}{N}}\\
    Else:\\
    {\beta_j^{*}=0}
    \]

  • 第二个区间,\(\beta_j<0\)
    全局最小点在\(\beta_j=\frac{2\frac{\sum r_ix_i}{N}+\lambda}{2\sum x_i^2}{N}\)处取得。

但是我们这时的定义域限制在 \(\beta_j<0\),因此需要分类讨论是否能取全局最小点:
\[
if (2\frac{\sum r_ix_i}{N}+\lambda<0):\\
{\beta_j^{*}=\frac{2\frac{\sum r_ix_i}{N}+\lambda}{2\sum x_i^2}{N}}\\
Else:\\
{\beta_j^{*}=0}
\]

综合上面的讨论,

  • case1:\(2\frac{\sum r_ix_i}{N}<-\lambda\)
    \(\beta_j^{*}=\frac{2\frac{\sum r_ix_i}{N}+\lambda}{2\sum x_i^2}{N}\)

  • case2:\(-\lambda<2\frac{\sum r_ix_i}{N}<\lambda\)
    \(\beta_j^{*}=0\)

  • case3:\(\lambda<2\frac{\sum r_ix_i}{N}\)
    \(\beta_j^{*}=\frac{2\frac{\sum r_ix_i}{N}-\lambda}{2\sum x_i^2}{N}\)

定义一个软阈值函数来统一三个case

\[
\beta_j^{*}=\frac{\text{soft threshold}({2\frac{\sum r_ix_i}{N},\lambda)}}{2\frac{\sum x_i^2}{N}}
\]

comment

对于用L2 loss function作为损失函数的回归问题,由于object function是关于\(\beta\)的凸函数,因此我们一定可以找到一个全局最优点。迭代过程是收敛的。

坐标下降法(coordinate descent method)求解LASSO的推导的更多相关文章

  1. V-rep学习笔记:机器人逆运动学数值解法(Cyclic Coordinate Descent Method)

    When performing inverse kinematics (IK) on a complicated bone chain, it can become too complex for a ...

  2. 坐标下降(Coordinate descent)

    坐标下降法属于一种非梯度优化的方法,它在每步迭代中沿一个坐标的方向进行线性搜索(线性搜索是不需要求导数的),通过循环使用不同的坐标方法来达到目标函数的局部极小值.

  3. week 5: ;Lasso regression & coordinate descent

    笔记. 岭回归, 计算回归系数时使( RSS(w)+λ||w||2) 最小 岭回归的结果会是所有的特征的weight都较小,但大多数又不完全为零. 而实际情况中,有的特征的确与输出值相关程度很高,we ...

  4. Lasso回归的坐标下降法推导

    目标函数 Lasso相当于带有L1正则化项的线性回归.先看下目标函数:RSS(w)+λ∥w∥1=∑Ni=0(yi−∑Dj=0wjhj(xi))2+λ∑Dj=0∣wj∣RSS(w)+λ∥w∥1=∑i=0 ...

  5. 人脸对齐SDM原理----Supervised Descent Method and its Applications to Face Alignment

    最近组里研究了SDM算法在人脸对齐中的应用,是CMU的论文<Supervised Descent Method and its Applications to Face Alignment> ...

  6. paper 142:SDM算法--Supervised Descent Method

    对于face recognition的研究,我是认真的(认真expression,哈哈哈~~~~~~)许久没有写blog了,欢迎一起讨论. SDM(Supvised Descent Method)方法 ...

  7. 梯度下降法Gradient descent(最速下降法Steepest Descent)

    最陡下降法(steepest descent method)又称梯度下降法(英语:Gradient descent)是一个一阶最优化算法. 函数值下降最快的方向是什么?沿负梯度方向  d=−gk

  8. machine learning (7)---normal equation相对于gradient descent而言求解linear regression问题的另一种方式

    Normal equation: 一种用来linear regression问题的求解Θ的方法,另一种可以是gradient descent 仅适用于linear regression问题的求解,对其 ...

  9. (3)梯度下降法Gradient Descent

    梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向, ...

随机推荐

  1. 统一资源定位符URL

    Uniform Resource Locate--URL 用途:通过URL访问web网页:通过URL使用其它的Internet应用程序,例如FTP,Telnet(远程登录服务):对应IE浏览器窗口中的 ...

  2. 简单的 自动生成 二维码 PHP 方法

    方法一:<style type="text/css">.eweima{    width:200px; height:200px; margin:auto;}</ ...

  3. 如何确保TCP协议传输稳定可靠?

    TCP,控制传输协议,它充分实现了数据传输时的各种控制功能:针对发送端发出的数据包确认应答信号ACK:针对数据包丢失或者出现定时器超时的重发机制:针对数据包到达接收端主机顺序乱掉的顺序控制:针对高效传 ...

  4. Python中的函数及函数参数的使用

    函数:一个工具,随调随用 降级代码冗余 增加代码的复用性,提高开发效率,为了不成为cv战士 提高程序扩展性 函数有两个阶段:定义阶段,调用阶段. 定义时:只检查函数体内代码语法,不执行函数体内代码. ...

  5. web前端css(二)

    一.  标准文档流 标准文档流中会有一些现象: 空白折叠 和 高低不齐边底对齐的现象 标准文档流等级森严, 标签分为两种等级: 行内元素 和 块级元素. 1. 行内元素 和 块级元素的区别: 行内元素 ...

  6. Oracle数据库常用脚本命令(二)

    --创建学生信息表create table student( sid number(8,0), name varchar2(20), sex char(2), birthday date, addre ...

  7. C语言学习书籍推荐《你必须知道的495个C语言问题》

    萨米特 (Steve summit) (作者), 孙云 (译者), 朱群英 (译者) 下载地址:点我 <你必须知道的495个C语言问题>以问答的形式组织内容,讨论了学习或使用C语言的过程中 ...

  8. 两个域名同时访问一个tomcat下的两个项目

    两个域名,分别映射一个TOMCAT底下,两个应用. 分三个步骤完成. 1.域名与IP的解析,此步骤在万网等机构完成. 2.APACHE的httpd.conf的配置 <VirtualHost *: ...

  9. Spark 中 RDD的运行机制

    1. RDD 的设计与运行原理 Spark 的核心是建立在统一的抽象 RDD 之上,基于 RDD 的转换和行动操作使得 Spark 的各个组件可以无缝进行集成,从而在同一个应用程序中完成大数据计算任务 ...

  10. React躬行记(8)——样式

    由于React推崇组件模式,因此会要求HTML.CSS和JavaScript混合在一起,虽然这与过去的关注点分离正好相反,但是更有利于组件之间的隔离.React已将HTML用JSX封装,而对CSS只进 ...