【BZOJ4823】[CQOI2017]老C的方块(网络流)
【BZOJ4823】[CQOI2017]老C的方块(网络流)
题面
题解
首先还是给棋盘进行黑白染色,然后对于特殊边左右两侧的格子单独拎出来考虑。
为了和其他格子区分,我们把两侧的这两个格子染成灰色。
于是一个不合法的状态就是两个相邻的灰色点如果还和一个其他的点相连就是非法的。
我们先把黑白点分开,源点连向黑点,汇点连向白点,边权是删去这个点的代价。
因为灰点可以两两配对,非两两配对之间的没有影响,然后所有黑点连向对应的灰点,另一半灰点连向对应的白点。而要删去一组不合法的要么删去一个灰点,要么删去所有黑点或者所有白点,而连向源汇已经处理了删去所有黑点或者白点,所以只需要考虑删去一个灰点,显然删哪个都是一样的所以两个匹配的灰点之间连一条权值为两个点权值较小值的边。
这样子最小割就是答案。
#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
using namespace std;
#define MAX 100100
const int inf=2e9;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next,w;}e[MAX*20];
int h[MAX],cnt=2;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0};h[v]=cnt++;
}
int S,T,cur[MAX],level[MAX];
queue<int> Q;
bool bfs()
{
for(int i=S;i<=T;++i)level[i]=0;
Q.push(S);level[S]=1;
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
if(e[i].w&&!level[e[i].v])
level[e[i].v]=level[u]+1,Q.push(e[i].v);
}
return level[T];
}
int dfs(int u,int flow)
{
if(u==T||!flow)return flow;
int ret=0;
for(int &i=cur[u];i;i=e[i].next)
{
int v=e[i].v,d;
if(e[i].w&&level[v]==level[u]+1)
{
d=dfs(v,min(flow,e[i].w));
ret+=d;flow-=d;
e[i].w-=d;e[i^1].w+=d;
if(!flow)break;
}
}
if(!ret)level[u]=0;
return ret;
}
int Dinic()
{
int ret=0;
while(bfs())
{
for(int i=S;i<=T;++i)cur[i]=h[i];
ret+=dfs(S,inf);
}
return ret;
}
map<pair<int,int>,int> M;
int col[MAX];
int d[4][2]={1,0,0,1,-1,0,0,-1};
int C,R,n,X[MAX],Y[MAX],W[MAX];
bool check(int x,int y)
{
if(x&1)return y%4==1||y%4==2;
else return y%4==3||y%4==0;
}
int main()
{
R=read();C=read();n=read();
for(int i=1;i<=n;++i)
{
Y[i]=read();X[i]=read();W[i]=read();
M[make_pair(X[i],Y[i])]=i;
if((X[i]+Y[i]+1)&1)col[i]=check(X[i],Y[i])?3:1;
else col[i]=check(X[i],Y[i])?2:0;
}
S=0;T=n+1;
for(int i=1;i<=n;++i)
if(col[i]==0)Add(i,T,W[i]);
else if(col[i]==1)Add(S,i,W[i]);
else if(col[i]==2)
for(int j=0;j<4;++j)
{
int x=X[i]+d[j][0],y=Y[i]+d[j][1];
if(M.find(make_pair(x,y))==M.end())continue;
int d=M[make_pair(x,y)];
if(col[d]==1)Add(d,i,inf);
else if(col[d]==3)Add(i,d,min(W[d],W[i]));
}
else if(col[i]==3)
for(int j=0;j<4;++j)
{
int x=X[i]+d[j][0],y=Y[i]+d[j][1];
if(M.find(make_pair(x,y))==M.end())continue;
int d=M[make_pair(x,y)];
if(col[d]==0)Add(i,d,inf);
}
printf("%d\n",Dinic());
return 0;
}
【BZOJ4823】[CQOI2017]老C的方块(网络流)的更多相关文章
- bzoj4823: [Cqoi2017]老C的方块(最小割)
4823: [Cqoi2017]老C的方块 题目:传送门 题解: 毒瘤题ORZ.... 太菜了看出来是最小割啥边都不会建...狂%大佬强强强 黑白染色?不!是四个色一起染,四层图跑最小割... 很 ...
- BZOJ4823 CQOI2017老C的方块(最小割)
如果将其转化为一个更一般的问题即二分图带权最小单边点覆盖(最小控制集)感觉是非常npc的.考虑原题给的一大堆东西究竟有什么奇怪的性质. 容易发现如果与特殊边相邻的两格子都放了方块,并且这两个格子都各有 ...
- BZOJ4823 [Cqoi2017]老C的方块 【最小割】
题目 老C是个程序员. 作为一个懒惰的程序员,老C经常在电脑上玩方块游戏消磨时间.游戏被限定在一个由小方格排成的R行C列网格上,如果两个小方格有公共的边,就称它们是相邻的,而且有些相邻的小方格之间的公 ...
- [bzoj4823][Cqoi2017]老C的方块
来自FallDream的博客,未经允许,请勿转载,谢谢. 挺有意思的一道题.... 看完题面比较明确是最小割,考虑怎么建图 想了比较久 突破口应该是题目中那张奇怪的图 观察这个奇怪的图和方块,很容易发 ...
- bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块
http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...
- [CQOI2017]老C的方块 网络流
---题面--- 题解: 做这题做了好久,,,换了4种建图QAQ 首先我们观察弃疗的形状,可以发现有一个特点,那就是都以一个固定不变的特殊边为中心的,如果我们将特殊边两边的方块分别称为s块和t块, 那 ...
- BZOJ 4823 [Cqoi2017]老C的方块 ——网络流
lrd的题解:http://www.cnblogs.com/liu-runda/p/6695139.html 我还是太菜了.以后遇到这种题目应该分析分析性质的. 网络流复杂度真是$O(玄学)$ #in ...
- 洛谷$P3756\ [CQOI2017]$老$C$的方块 网络流
正解:网络流 解题报告: 传送门$QwQ$ 看到不能出现给定的讨厌的图形,简单来说就,特殊边两侧的方格不能同时再连方格. 所以如果出现,就相当于是四种方案?就分别炸四个格子. 然后冷静分析一波之后发现 ...
- bzoj 4823 [Cqoi2017]老C的方块——网络流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4823 一个不合法方案其实就是蓝线的两边格子一定选.剩下两部分四相邻格子里各选一个. 所以这个 ...
- BZOJ 4823 Luogu P3756 [CQOI2017]老C的方块 (网络流、最小割)
题目链接 (Luogu) https://www.luogu.org/problem/P3756 (BZOJ) http://lydsy.com/JudgeOnline/problem.php?id= ...
随机推荐
- acwing 851. spfa求最短路 模板
地址 https://www.acwing.com/problem/content/description/853/ 给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出 ...
- 关于实现序列化接口Serializable
关于javabean,是否需要实现序列化接口这个问题,只有当这些javabean需要通过分布式网络传输,磁盘持久化等情况下才有必要,其他情况并非必须.
- 解决tail命令提示“tail: inotify 资源耗尽,无法使用 inotify 机制,回归为 polling 机制”
报错的原因是 inotify 跟踪的文件数量超出了系统设置的上限值,要是这个问题不经常出现可以使用临时解决方法,或者写入配置文件来永久解决. 临时解决方法: # 查看 inotify 的相关配置 $ ...
- C++入门到理解阶段二基础篇(9)——C++结构体
1.概述 前面我们已经了解到c++内置了常用的数据类型,比如int.long.double等,但是如果我们要定义一个学生这样的数据类型,c++是没有的,此时就要用到结构体,换言之通过结构体可以帮我们定 ...
- dict继承关系
from collections.abc import Mapping, MutableMapping#dict属于mapping类型, MutalbelMapping继承Mapping a = {} ...
- (转)滑动平均法、滑动平均模型算法(Moving average,MA)
原文链接:https://blog.csdn.net/qq_39521554/article/details/79028012 什么是移动平均法? 移动平均法是用一组最近的实际数据值来预测未来一期或几 ...
- Java生鲜电商平台-SpringCloud分布式请求跟踪系统设计与实践
Java生鲜电商平台-SpringCloud分布式请求跟踪系统设计与实践 Java生鲜电商平台微服务现状 某个服务挂了,导致上游大量报警,如何快速定位哪个服务出问题? 某个核心挂了,导致大量报错,如何 ...
- 上传图片到七牛云(服务端 node.js sdk)
大体思路 前端要上传图片到七牛云,需要有一个token进行授权操作,而获取这个上传的upload token(以下简称upToken),在服务端需要一定的身份校验,比如说:只有登录的vip用户才能拿到 ...
- 为什么局部内部类中访问同一方法中的变量,该变量一定要是final修饰的
最近有一个疑惑:为什么局部内部类中访问同一方法中的变量,该变量一定要是final修饰的 首先,我们看一个局部内部类的例子: class OutClass { ...
- eclipse git 主干代码合并到分支
https://blog.csdn.net/wwd0501/article/details/80676807 eclipse git 主干代码合并到分支: 1.项目切换至分支: 2.选中项目右键--& ...