题目:求斐波那契数列的第n项。写一个函数,输入n,求斐波那契数列的第n项。斐波那契数列的定义如下:f(0) = 0, f(1) = 1,f(n) = f(n - 1) + f(n - 2)。

测试用例:

  • 功能测试(如输入3、5、10等)。
  • 边界值测试(如输入0、1、2)。
  • 性能测试(输入较大的数字,如40、50、100等)。

测试代码:

void test(int n, int expected){
if(fibonacci_solution1(n) == expected)
printf("test for %d in solution1 passed.\n", n);
else
printf("test for %d in solution1 failed.\n", n);
if(fibonacci_solution2(n) == expected)
printf("test for %d in solution2 passed.\n", n);
else
printf("test for %d in solution2 failed.\n", n);
if(fibonacci_solution3(n) == expected)
printf("test for %d in solution3 passed.\n", n);
else
printf("test for %d in solution3 failed.\n", n);
}

本题考点:

  • 考查应聘者对递归、循环的理解及编码能力。
  • 考查应聘者对时间复杂度的分析能力。
  • 如果面试官采用的是青蛙跳台阶的问题,那么同时还在考查应聘者的数学建模能力。

代码实现:

#include <cstdio>
#include <cassert> //=================方法一:递归==================
long long fibonacci_solution1(unsigned int n){
if(n <= 0)
return 0;
if(n == 1)
return 1;
return fibonacci_solution1(n - 1) + fibonacci_solution1(n - 2);
} //=================方法二:循环==================
long long fibonacci_solution2(unsigned n){
int result[2] = {0, 1};
if(n < 2)
return result[n];
long long fibMinusOne = 1;
long long fibMinusTwo = 0;
long long fibN = 0;
for(unsigned int i = 2; i <= n; ++i){
fibN = fibMinusOne + fibMinusTwo;
fibMinusTwo = fibMinusOne;
fibMinusOne = fibN;
}
return fibN;
} //=================方法三:基于矩阵乘法=============
struct Matrix2By2{
Matrix2By2(long long m00 = 0,
long long m01 = 0,
long long m10 = 0,
long long m11 = 0)
:m_00(m00), m_01(m01), m_10(m10), m_11(m11){}
long long m_00, m_01, m_10, m_11;
}; Matrix2By2 MatrixMultiply(const Matrix2By2& matrix1,
const Matrix2By2& matrix2){
return Matrix2By2(
matrix1.m_00 * matrix2.m_00 + matrix1.m_01 * matrix2.m_10,
matrix1.m_00 * matrix2.m_01 + matrix1.m_01 * matrix2.m_11,
matrix1.m_10 * matrix2.m_00 + matrix1.m_11 * matrix2.m_10,
matrix1.m_10 * matrix2.m_01 + matrix1.m_11 * matrix2.m_11
);
} Matrix2By2 MatrixPower(unsigned int n){
assert(n > 0);
Matrix2By2 matrix;
if(n == 1){
matrix = Matrix2By2(1, 1, 1, 0);
}
else if(n % 2 == 0){
matrix = MatrixPower(n / 2);
matrix = MatrixMultiply(matrix, matrix);
}
else if(n % 2 == 1){
matrix = MatrixPower((n - 1) / 2);
matrix = MatrixMultiply(matrix, matrix);
matrix = MatrixMultiply(matrix, Matrix2By2(1, 1, 1, 0));
}
return matrix;
} long long fibonacci_solution3(unsigned int n){
int result[2] = {0, 1};
if(n < 2)
return result[n];
Matrix2By2 PowerNMinus2 = MatrixPower(n - 1);
return PowerNMinus2.m_00;
}
int main(){
test(0, 0);
test(1, 1);
test(2, 1);
test(3, 2);
test(4, 3);
test(5, 5);
test(6, 8);
test(7, 13);
test(8, 21);
test(9, 34);
test(10, 55);
test(40, 102334155);
test(100, 3736710778780434371);
return 0;
}

剑指offer笔记面试题10----斐波那契数列的更多相关文章

  1. 【剑指offer】面试题 10. 斐波那契数列

    面试题 10. 斐波那契数列 题目一:求斐波那契数列的第n项 题目描述:求斐波拉契数列的第n项 写出一个函数,输入n,求斐波拉契(Fibonacci)数列的第n项.斐波拉契数列定义如下: C++ 实现 ...

  2. 《剑指offer》面试题9 斐波那契数列 Java版

    书中方法一:递归,这种方法效率不高,因为可能会有很多重复计算. public long calculate(int n){ if(n<=0){ return 0; } if(n == 1){ r ...

  3. 【剑指Offer】面试题10- I. 斐波那契数列

    题目 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项.斐波那契数列的定义如下: F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - 2) ...

  4. 《剑指offer》面试题10- I. 斐波那契数列

    问题描述 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项.斐波那契数列的定义如下: F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - ...

  5. 剑指Offer(书):斐波那契数列

    题目:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 分析:第一种方法:递归,45时,时间为5s,50时,我就等不及了.原因是重 ...

  6. 剑指offer 7. 递归和循环 斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 简简单单 废话不多说,直接上代码: public class Sol ...

  7. 剑指offer二刷——数组专题——斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,第1项是1). n<=39 我的想法 斐波那契数列定义:F(0)=0,F(1)=1, ...

  8. 【校招面试 之 剑指offer】第10-1题 斐波那契数列

    递归以及非递归实现: #include<iostream> using namespace std; long long fun(long long n){ if(n == 0){ ret ...

  9. 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)

    递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...

  10. 剑指offer第二版面试题10:斐波那契数列(JAVA版)

    题目:写一个函数,输入n,求斐波那契数列的第n项.斐波那契数列的定义如下: 1.效率很低效的解法,挑剔的面试官不会喜欢 使用递归实现: public class Fibonacci { public ...

随机推荐

  1. conda docker镜像

    之前的python环境,使用ubuntu安装pip来安装python依赖,但是遇到缺少某些库的版本,比如一个项目需要用到faiss,pip只有最新的1.5.3版本,但是这个版本使用了较新的CPU指令, ...

  2. 用js写一个鼠标坐标实例

    HTML代码 写一个div来作为鼠标区域 div中写一个span显示坐标信息 <body> <div id=""> <span></spa ...

  3. Could not find any version that matches com.android.support:appcompat-v7:29.+

    新学Android开发设计用到Android Studio,说实话真的是BUG满天飞,稍有不慎就会蹦出一个不明所以的问题. 新建Android工程时编译运行报错: 目测是本地文件和工程对应的依赖包不匹 ...

  4. Nginx模块及配置虚拟主机

    1.Nginx的2组主要的模块 (1)core modules (必需,核心模块) 包括:Main.Events (2)Standard HTTP modules(虽然不是必需,但是缺省都会安装,不建 ...

  5. 小程序实现日期时间控件picker

    小程序自带的组件中有日期跟时间的picker,但就缺个日期时间picker组件,那没办法,只能自己弄一个,这个组件不是很难,比较难的地方是要根据不同年份(是否闰年)跟月份决定一个月里有多少天. 我直接 ...

  6. maven搭建webservice apache cxf实现

    用 web方式发布 webService 服务端.客户端 一.服务器端搭建 1.首先创建 一个web工程(增加Maven依赖) 2.增加Maven依赖包,如下: <project xmlns=& ...

  7. SSH框架之Spring第三篇

    1.1 AOP概述 1.1.1 什么是AOP? AOP : 全称是Aspect Oriented Progamming既 : 面向切面编程.通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技 ...

  8. JS---体验DOM操作

    体验DOM操作 1. <!--html代码--> <input type="button" value="弹框" onclick=" ...

  9. Docker容器镜像打成tar包

    简述需求: 在现在容器上保存镜像进行打包,在另一台服务上使用 首先查看下现有要打tar包的容器 docker ps -a 接下来用commit参数进行保存镜像, -a 提交人的姓名  -m “提交内容 ...

  10. JQuery 实现多个checkbox 只选中一个

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...