Sliding Window
Time Limit: 12000MS   Memory Limit: 65536K
Total Submissions: 73426   Accepted: 20849
Case Time Limit: 5000MS

Description

An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example: 
The array is [1 3 -1 -3 5 3 6 7], and k is 3.

Window position Minimum value Maximum value
[1  3  -1] -3  5  3  6  7  -1 3
 1 [3  -1  -3] 5  3  6  7  -3 3
 1  3 [-1  -3  5] 3  6  7  -3 5
 1  3  -1 [-3  5  3] 6  7  -3 5
 1  3  -1  -3 [5  3  6] 7  3 6
 1  3  -1  -3  5 [3  6  7] 3 7

Your task is to determine the maximum and minimum values in the sliding window at each position.

Input

The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line. 

Output

There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values. 

Sample Input

8 3
1 3 -1 -3 5 3 6 7

Sample Output

-1 -3 -3 -3 3 3
3 3 5 5 6 7

题目大意:

给你长度为n的数列,要你输出1..k, 2..k+1, 3..k+2, ...区间的最大值和最小值。

单调队列经典题。

维护单调不减序列和单调不增序列的下标,这样队首就分别是最小值和最大值的下标。

以单调不减序列举例:

每次向后移动,先删除队尾元素直至小于等于新元素。贪心的思想,之前队尾元素如果比它大,那该队尾元素永远不可能成为某个区间的最小值。

再判断队首元素是否在k区间内。

单调不增序列同理。

单调队列可以用deque写。

对这两个队列考虑,(平摊分析)每个元素最多入队出队两次。复杂度O(n)。

所以TLE总是让人觉得僵硬。On, 1e6, T???

其实是io太慢了。

scanf printf 相对cin cout 来说确实快了,但这个可是1e6+2e6啊 。。 ̄へ ̄

第一次真正明白输入输出挂的含义。

scanf printf 其实就是对putchar getchar 等函数的封装,功能强大但臃肿。所以,要用一些速度比scanf快,但功能比putchar全面的函数取而代之。

输入输出挂(正负整数)。

template <class T>
inline bool scan_d(T &ret)
{
char c;
int sgn;
if (c = getchar(), c == EOF)
{
return ; //EOF
}
while (c != '-' && (c < '' || c > ''))
{
c = getchar();
}
sgn = (c == '-') ? - : ;
ret = (c == '-') ? : (c - '');
while (c = getchar(), c >= '' && c <= '')
{
ret = ret * + (c - '');
}
ret *= sgn;
return ;
} template <class T>
inline void print_d(T x)
{
if(x < )
{
putchar('-'); x = -x;
}
if (x > )
{
print_d(x / );
}
putchar(x % + '');
}

由上面的代码可以看出,输出一个整数的复杂度并不是o1的,取决于输出数的位数,是o(m),m是常数。如果数是int,n又很大(1e6),复杂度其实是o(mn),用printf的话可以当成onlogn+算了,t也不奇怪吧。

不过该挂对C++极度无感(不知道为啥。。),对G++就很真实了。从下图来说,scanf用c++会快一点,不过真遇到大量输出,g++&挂是最佳选择,所以忘了c++吧。

AC代码:

#include <cstdio>
#include <queue>
#include <deque>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
typedef long long ll;
const int maxn=; template <class T>
inline bool scan_d(T &ret)
{
char c;
int sgn;
if (c = getchar(), c == EOF)
{
return ; //EOF
}
while (c != '-' && (c < '' || c > ''))
{
c = getchar();
}
sgn = (c == '-') ? - : ;
ret = (c == '-') ? : (c - '');
while (c = getchar(), c >= '' && c <= '')
{
ret = ret * + (c - '');
}
ret *= sgn;
return ;
} template <class T>
inline void print_d(T x)
{
if(x < )
{
putchar('-'); x = -x;
}
if (x > )
{
print_d(x / );
}
putchar(x % + '');
} int arr[maxn+];
int temp[maxn+];
int ans[maxn][]; int cmp(int x,int y)
{
return arr[x]<arr[y];
} int main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
scan_d(arr[i]); std::deque<int> incq;//单调不减序列
std::deque<int> decq;//单调不增序列 for(int i=;i<=k;i++)
temp[i]=i;
std::sort(temp+,temp++k,cmp);
for(int i=;i<=k;i++)
{
incq.push_back(temp[i]);
decq.push_front(temp[i]);
}
ans[][]=arr[incq.front()];
ans[][]=arr[decq.front()]; for(int i=k+;i<=n;i++)
{
while(!incq.empty())
{
if(incq.front()+k-<i)
incq.pop_front();
else
break;
}
while(!incq.empty())
{
if(arr[incq.back()]>arr[i])
incq.pop_back();
else
break;
}
incq.push_back(i);
while(!decq.empty())
{
if(decq.front()+k-<i)
decq.pop_front();
else
break;
}
while(!decq.empty())
{
if(arr[decq.back()]<arr[i])
decq.pop_back();
else
break;
}
decq.push_back(i);
ans[i-k+][]=arr[incq.front()];
ans[i-k+][]=arr[decq.front()];
} for(int i=;i<=n-k+;i++)
{
if(i==)
print_d(ans[i][]);
else
{
putchar(' ');
print_d(ans[i][]);
}
}
putchar('\n');
for(int i=;i<=n-k+;i++)
{
if(i==)
print_d(ans[i][]);
else
{
putchar(' ');
print_d(ans[i][]);
}
}
putchar('\n'); return ;
}

poj 2823 Sliding Windows (单调队列+输入输出挂)的更多相关文章

  1. POJ 2823 Sliding Window + 单调队列

    一.概念介绍 1. 双端队列 双端队列是一种线性表,是一种特殊的队列,遵守先进先出的原则.双端队列支持以下4种操作: (1)   从队首删除 (2)   从队尾删除 (3)   从队尾插入 (4)   ...

  2. poj 2823 Sliding Window (单调队列入门)

    /***************************************************************** 题目: Sliding Window(poj 2823) 链接: ...

  3. POJ 2823 Sliding Window (单调队列)

    单调队列 加了读入挂比不加更慢.... 而且这份代码要交c++ 有大神G++跑了700ms..... orzorzorz #include<iostream> #include<cs ...

  4. POJ 2823 滑动窗口 单调队列模板

    我们从最简单的问题开始: 给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k. 要求: f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0 ...

  5. POJ 2823 滑动窗口 单调队列

    https://vjudge.net/problem/POJ-2823 中文:https://loj.ac/problem/10175 题目 给一个长度为 $N$ 的数组,一个长为 $K$ 的滑动窗体 ...

  6. POJ 2823 Sliding Window 题解

    POJ 2823 Sliding  Window 题解 Description An array of size n ≤ 106 is given to you. There is a sliding ...

  7. 洛谷P1886 滑动窗口(POJ.2823 Sliding Window)(区间最值)

    To 洛谷.1886 滑动窗口 To POJ.2823 Sliding Window 题目描述 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每 ...

  8. POJ 2823 Sliding Window 【单调队列】

    题目链接:http://poj.org/problem?id=2823 题目大意:给出一组数,一个固定大小的窗体在这个数组上滑动,要求出每次滑动该窗体内的最大值和最小值. 这就是典型的单调队列,单调队 ...

  9. POJ 2823 Sliding Window(单调队列入门题)

      Sliding Window Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 67218   Accepted: 190 ...

随机推荐

  1. [springboot 开发单体web shop] 8. 商品详情&评价展示

    上文回顾 上节 我们实现了根据搜索关键词查询商品列表和根据商品分类查询,并且使用到了mybatis-pagehelper插件,讲解了如何使用插件来帮助我们快速实现分页数据查询.本文我们将继续开发商品详 ...

  2. vue项目页面切换到默认显示顶部

    页面切换到默认显示顶部 方法一 使用前端路由,当切换到新路由时,想要页面滚到顶部,或者是保持原先的滚动位置,就像重新加载页面那样. vue-router 能做到,而且更好,它让你可以自定义路由切换时页 ...

  3. Obtaining the backtrace - libunwind

    Sometimes when working on a large project, I find it useful to figure out all the places from which ...

  4. Openlayers 实现轨迹播放/暂停/重新播放/从点击处播放/提速/减速

    说明: 我的需求是需要实现轨迹播放/暂停/重新播放/从点击处播放,因此封装了一个类 解决方案: 1.初始化:主要是处理一下图层以及数据,通过插值构造一个全局数组 /** * @description ...

  5. OutOfMemoryError本地线程不足问题分析

    java.lang.OutOfMemoryError本地线程不足问题 11月份中旬客户方的一个系统突然报内存异常,当时是早上上班的时候碰到该项目的项目经理,还跟该项目的项目经理开玩笑说你们系统上线将近 ...

  6. 读完此文让你了解各个queue的原理

    队列是一种特殊的线性表,它只允许在表的前端进行删除操作,而在表的后端进行插入操作.通俗来讲,就是一个队列中,早来的排在前面,后来的就在队尾,而这个队列大多只有一个出口和入口的单项队列.Queue的重要 ...

  7. android clipChildren 的使用与遇到的困难

    案例 在一次我写画板模块的时候,布局比较普通,但是需要子元素溢出父元素.其中一小块布局如下所示: 红色部分需要溢出,这个时候我想到了clipChildren. clipChildren 就是说我可以不 ...

  8. 数据表与简单java类——一对多映射

    例如:给定一个分类表和子分类表 得到如下信息: 1.一个分类的完整信息: 2.根据分类获取其对应的子分类 package Mapping_transformation; class item { pr ...

  9. Spring源码分析之AOP

    1.AOP简介 AOP即面向切面编程(Aspect Oriented Programming),通过预编译方式及运行期动态代理实现程序功能的统一维护的一种技术.使用aop对业务逻辑的各个部分进行隔离, ...

  10. 【JavaEE】之MyBatis查询缓存

    为了减轻数据压力,提高数据库的性能,我们往往会需要使用缓存.MyBatis为我们提供了一级缓存和二级缓存. (1)一级缓存是SqlSession级别的缓存,在操作数据库的时候需要创建一个SqlSess ...